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REVIEW

The importance of FLT3 mutational analysis in acute myeloid leukemia

Mrinal M. Patnaik

Division of Hematology, Mayo Clinic, Rochester, MN, USA

ABSTRACT
Activating mutations in FMS-like tyrosine kinase 3 (FLT3), including internal tandem duplications
(ITDs) and tyrosine kinase domain (TKD) mutations, are common in patients with acute myeloid
leukemia (AML). FLT3-ITD is a negative prognostic factor that remains prognostically relevant
even after intensive chemotherapy and/or stem cell transplant. FLT3 testing was historically
viewed as being purely prognostic; however, with the advent of FLT3 inhibitors, it will likely be
seen as both prognostic and predictive. The multikinase inhibitor midostaurin, in combination
with chemotherapy, is the first targeted agent to significantly prolong survival in patients with
newly diagnosed FLT3-mutated AML and was recently approved by health authorities. Recently,
the European LeukemiaNet recommended FLT3 testing (both TKD and ITD) for all patients with
AML, with results required within 3 days. The need for optimized, multigene platform testing
incorporating FLT3 mutations will increase as knowledge of interactions between FLT3 and other
myeloid-relevant mutations grows.
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FLT3 mutations in AML

FMS-like tyrosine kinase 3 (FLT3), a member of the
type III receptor tyrosine kinase family [1,2], is
expressed in �90% of leukemic blasts of patients with
acute myeloid leukemia (AML) [3,4]. FLT3 mutations
occur in approximately one-third of patients with AML
(Figure 1) [5–13]. In-frame duplications of 3 to >400
base pairs (bp), known as internal tandem duplications
(ITDs), are the most common, occurring in up to 30%
of adult patients with de novo AML [5,6,14]. However,
FLT3-ITD is not expressed equally among patients with
FLT3-ITD–positive (FLT3-ITDþ) disease [15]. Differences
in expression levels, measured using the FLT3-ITD-to-
wild-type (WT) allelic ratio, impact prognosis [16]. This
ratio is a measure of the relative signal intensity
derived from the fluorescently labeled products ampli-
fied from the FLT3-ITD and FLT3-WT alleles using a
polymerase chain reaction (PCR) assay [17,18].
Consensus is that a high FLT3-ITD-to-WT allelic ratio is
a negative prognostic factor [17,19–25]; however, until
recently, no standard definition existed as to what cut-
off distinguished a low vs high allelic ratio. The 2017
European LeukemiaNet (ELN) guidelines defined 0.5 as
the cutoff between low (FLT3-ITDlow; <0.5) and high
(FLT3-ITDhigh; �0.5) allelic ratios [16].

Mutations within the tyrosine kinase domain (TKD)
are the second most common type of FLT3 mutation

in AML (occurring in up to 14% of adult patients with
AML) [13,17,26]. Mutations within the TKD are primar-
ily point mutations within the activation loop (e.g. resi-
dues D835, I836, and Y842) of the TKD2 [6,13,18,27]
and, to a lesser extent, within the TKD1 (e.g. residues
N676 and F691) [12,27]. Other point mutations and
smaller insertions/deletions have also been identified
within the TKD and other domains (e.g. extracellular
and juxtamembrane domains [occurring in �2% of
patients with AML]) [8,9,11,13]. The prognostic signifi-
cance of FLT3-TKD mutations in the overall AML popu-
lation and the impact of the FLT3-TKD allelic ratio are
still debatable and may depend on additional muta-
tions as well as the cytogenetic background [13,24].

Both FLT3-ITD and FLT3-TKD mutations are common
in patients with AML with normal karyotype (30–39%
and 6–14%, respectively), but they are also associated
with karyotypic abnormalities, such as t(15;17)/PML-
RARA (30–39% and 8–9%, respectively) and core bind-
ing factor AML (5–8% and 4–14%, respectively)
[13,17,26,28,29]. FLT3-ITD is also frequently associated
with t(6;9) [DEK-NUP214] abnormalities (in up to 90%
of patients) [17,30,31]. Importantly, the prognostic
impact of FLT3 mutations can vary by cytogenetic
group. For example, in patients with t(15;17) abnor-
malities, there was no difference in outcome between
those with and without FLT3-ITD mutations; however,
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patients with FLT3-TKD had significantly worse out-
comes (compared with those with FLT3-WT) [13,17,32].
Furthermore, recent advances indicate that the prog-
nosis for patients with FLT3 mutations can be affected
by the presence or absence of additional mutations
[14,16,33]. For example, patients who are FLT3-ITD
negative (FLT3-ITD�) or FLT3-ITDlow and positive for
nucleophosmin 1 mutations (NPM1þ) have a favorable
prognosis, whereas those who are FLT3-ITD� or FLT3-
ITDlow with NPM1-WT or FLT3-ITDþ and NPM1þ have
an intermediate prognosis. Patients who are FLT3-
ITDhigh with NPM1-WT have a poor prognosis [16] and
are less likely to achieve complete remission (CR) with

induction chemotherapy than patients with other
FLT3/NPM1 combinations (p< .005) [34].

FLT3 testing: a prognostic marker

Current FLT3 testing landscape

Historically, patients with AML were stratified into risk
groups based on age, performance status, white blood
cell count, and cytogenetics [35]. Subsequently, gene
mutations (e.g. NPM1, FLT3, TP53, and CEBPA) were rec-
ognized as important prognostic factors and thus
included in testing recommendations in the United
States and Europe [16,36]. Until recently, FLT3 testing

Figure 1. FMS-like tyrosine kinase 3 (FLT3) contains 5 functional domains: an immunoglobulin-like extracellular domain, a trans-
membrane domain, a juxtamembrane domain (JMD), an interrupted tyrosine kinase domain (TKD), and a small C-terminal domain.
Internal tandem duplications (ITDs), insertions of 3 to >400 base pairs (bp), are the most common mutations in FLT3. ITDs occur
in up to 30% of patients with acute myeloid leukemia (AML); of these, 69.5% are located in the JMD and 30.5% are located in the
TKD (25.8% in the beta1-sheet and 4.6% in other regions). Activating mutations within the TKD occur in up to 14% of patients
with AML; of these, 90.5% are located within the activation loop of the TKD2 and 9.5% are located within the TKD1. Additional
activating mutations have been identified at the very low frequency within the extracellular domain (<1% of cases) and the JMD
(<1–2% of cases) [5–13]. aAdditional point mutations that have been identified in patients with AML – but have not been found
to be activating mutations in vitro – include mutations within the extracellular domain (e.g. T167, V194, D324, Y364, and V491),
transmembrane domain (e.g. I548 and V557), JMD (e.g. V579 and E598), TKD1 (e.g. A680 and M737), and TKD2 (e.g. V816, A814,
and T784) [6,8,9]. bThe majority of mutations within the TKD are point mutations that result in amino acid changes; however, acti-
vating mutations caused by insertions (e.g. insertion of glycine and serine between residues S840 and N841 [S840GS]) and dele-
tions (e.g. DI836 and DE598/Y599) have also been identified in the TKD [6,10,11,13].
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was recommended as a prognostic marker only in
patients with cytogenetically normal AML. However,
new recommendations for FLT3 testing in all patients
with AML are a result of the approval of the first FLT3-
targeted therapy, midostaurin, and the recognition
that FLT3 is a negative prognostic marker, regardless
of cytogenetics [16,36–37]. Importantly, results of FLT3
testing should be made available within 48–72 h after
the initial diagnosis of AML so that targeted therapy
can be initiated in a timely manner [16].

Little information exists on the real-world FLT3 test-
ing rates in patients with AML, but a retrospective
chart review suggests that despite the recommenda-
tions, FLT3 testing is not always performed, even in
patients with cytogenetically normal AML. According
to a retrospective registry review of molecular marker
testing performed at a single referral center between
2010 and 2012, only 77% of patients with cytogeneti-
cally normal AML were routinely tested for FLT3 [38].
Furthermore, there is a gap in molecular testing rates
(including FLT3) between academic centers and com-
munity referral sites, as suggested by the results of a
single-institution retrospective chart review that ana-
lyzed molecular testing rates over time (2008–2012).
Despite an increase in testing over time, testing rates
were significantly higher at academic centers than at
community sites (93% vs 41%; p< .001) [39]. Routine
testing for FLT3 in patients with cytogenetically normal
AML had been recommended since at least 2010 [40],
which corresponds to the time at which molecular
testing was routinely performed in 100% of patients at
academic centers but not at community sites [39]. This
suggests that there is a lack of awareness or knowl-
edge about the importance of molecular testing at
community sites. More recently (2015), 294 members
of professional societies in the United States and
Europe were surveyed about their testing practices.
Among responders, 51 and 46% indicated that they
tested for FLT3-ITD in all patients and selected
patients, respectively [41]. This survey was intended to
provide a baseline for testing prior to the release of
the diagnostic workup guidelines jointly issued by the

College of American Pathologists and the American
Society of Hematology in 2017 [36]. It would be
expected that testing rates, particularly those for FLT3,
will soon increase given that FLT3-targeted therapies
are entering the market. One potential hurdle to wide-
spread FLT3 testing in the past was the lack of com-
mercially available tests. It will be interesting to see
whether testing rates at community sites will catch up
to those at academic centers – especially now that
commercially developed FLT3 testing assays are rou-
tinely incorporated into clinical trials and are begin-
ning to hit the market [42,43].

Methods for testing FLT3

The first method for the prognostic identification of
FLT3-ITD mutations involved PCR amplification and
subsequent sequencing of the juxtamembrane domain
region within the FLT3 gene [44]. Since then, several
methods have been developed or adapted for identify-
ing mutations and aberrant karyotypes (Table 1)
[45–51]. These methods vary in their sensitivity, turn-
around time, and development stage [52]. Some meth-
ods have been used in the clinic for >10 years, while
others are still being validated.

The first method to be readily adopted and widely
used in clinical trials is a modified PCR technique that
uses capillary electrophoresis to resolve fluorescently
labeled PCR products and can measure the FLT3-ITD-
to-WT allelic ratio [18]. Subsequently, a multiplex PCR
assay was developed that uses two sets of fluores-
cently labeled primers to simultaneously amplify the
ITD and D835 mutant regions [50]. The resulting PCR
products are then digested with EcoRV restriction
endonuclease and resolved using capillary electropho-
resis. FLT3-ITD mutations are identified by comparing
the size of the amplification products (the reference
WT product is 330 bp; ITDs are >330 bp). Mutations in
D835 and I836 remove a naturally occurring EcoRV
restriction endonuclease site in the WT amplification
product, resulting in a larger fluorescently labeled frag-
ment (129 bp; the WT product is 80 bp). Real-time

Table 1. Comparison between FLT3 testing methods.
FLT3 testing technique Specificity for FLT3 mutants Sensitivitya Turnaround time

Fluorescence-labeled polymerase
chain reaction [50,51]

Highly specific (>99%); detects mutations only within ampli-
fied region

5% 3 d

Whole-genome sequencing [46,49] Unbiased approach; detects FLT3-ITD and other FLT3 mutants >20% 7–12 d
Whole-exome sequencing [46] Unbiased approach; detects FLT3-ITD and other FLT3 mutants >5% Not reported; faster than

whole-genome sequencing
Multiplex-targeted next-generation

sequencing [46–48]
Unbiased approach; 99–100% detection of FLT3 mutants 1–2% 3–20 d

Karyogene [45] Highly specific (100%); samples are enriched for FLT3 exons >5% <14 db

FLT3: FMS-like tyrosine kinase 3; ITD: internal tandem duplication
aDetection of mutant allele variants per fraction of total cells.
bFor samples run once weekly; turnaround time can be <10 d for samples run twice weekly.
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quantitative PCR (RT-qPCR)–based tests have been pro-
posed as alternatives for detecting FLT3-ITD, FLT3-TKD,
and other point mutations [53,54] and can also be
used for monitoring disease progression (see Role in
detection of minimal residual disease). PCR-based
methods have short turnaround times [50,51] and are
highly selective. Their major limitation is that very few
FLT3-TKD point mutations can be detected unless the
PCR products are sequenced.

More recently, next-generation sequencing (NGS)
approaches have been developed that are capable of
screening many molecular markers. These NGS
approaches can be broadly divided into two large
groups: whole-genome sequencing, which captures
the entire genome; and whole-exome sequencing,
which selects for protein coding regions within the
genome [46]. Despite their tremendous potential, NGS
approaches are currently not suitable for the clinic:
they generate large amounts of data that can be over-
whelming for hematologists and may not provide add-
itional value for the diagnosis and treatment of
patients with AML. They also have long turnaround
times. Additionally, FLT3-ITD is inherently difficult to
detect using NGS approaches [46,47,55].

Multiplex-targeted NGS approaches, also known as
gene panels, are more suitable for the clinic because
they have rapid turnaround times and are highly sensi-
tive for detecting variant alleles [46]. Using a recently
validated 54-gene panel, researchers identified FLT3-
ITDs of varying lengths and insertion sites at lower
thresholds than conventional methods could detect
[48]. Karyogene, a recently developed diagnostic tool
that uses DNA capture to enrich for specific genes and
cytogenetic abnormalities sequenced by high-through-
put sequencing and analyzed with open-source soft-
ware, was able to detect 49 predefined recurrent gene
mutations, four chromosomal rearrangements, and
several copy number aberrations in 62 samples from
patients with AML [45]. Adopting a technology such as
Karyogene has its advantages (e.g. it integrates cyto-
genetic and molecular diagnosis into a single method
and has a relatively short turnaround time [<10 d])
[45] and disadvantages (e.g. it requires specialized
high-throughput sequencing equipment and technical
knowledge and skills).

Similarly, the use of gene panels for FLT3 testing
has both advantages and disadvantages. An advantage
is that this technology can detect rare mutations and
could aid in enrolling patient subgroups into clinical
trials to better understand the impact of such muta-
tions. For example, this technology would be useful to
determine the prognostic and therapeutic impact of
the recently identified, rare N767 mutation that

confers resistance to certain FLT3 inhibitors in vitro
[12,56]. A potential disadvantage is that gene panel
testing can have longer turnaround times (3–20 d) [46]
than conventional PCR-based methods (48–72 h) cur-
rently used to screen patients in clinical trials
[16,57,58].

Treatment for patients with FLT3-mutated
AML

Until recently, the standard of care for patients with
AML – induction and consolidation chemotherapy –
remained unchanged for >25 years [59,60]. Outside
the context of a clinical trial, therapy for patients with
newly diagnosed AML depends on age, fitness level,
and eligibility to receive intensive induction chemo-
therapy [16,59]. Most fit patients generally receive
intensive anthracycline- and cytarabine-based induc-
tion chemotherapy, whereas older or unfit patients
may receive lower-intensity induction chemotherapies
(e.g. low-dose cytarabine or hypomethylating agents).
For patients who achieve CR, the choice of consolida-
tion therapy depends on their risk stratification group
(i.e. favorable, intermediate, or unfavorable): patients
with favorable risk receive high-dose cytarabine,
whereas patients with intermediate or unfavorable risk
in first complete remission (CR1) often undergo allo-
geneic hematopoietic stem cell transplant (alloHSCT),
if eligible [16,59]. Before now, no targeted therapies
were approved for patients with FLT3-mutated AML
[37,61]. Despite this, outcomes in patients with FLT3
mutations have improved over the past 15 years [62].
In a retrospective study of patients with AML eval-
uated at a single institution from 2000 to 2014, an
increasing number underwent HSCT over time; and
those who underwent HSCT, particularly in CR1, had
improved survival compared with patients who did
not receive an HSCT. In the study, a trend toward bet-
ter response rates was seen in patients who received
first-line chemotherapy in combination with FLT3
inhibitors (mostly in the setting of a clinical trial) com-
pared with those who did not [62].

Role of alloHSCT therapy

Transplant rates have increased significantly over the
past 20 years, accompanied by increasing survival rates
in patients with AML [62,63]. AlloHSCT is usually rec-
ommended for patients with FLT3-ITD mutations in
CR1 who are eligible for transplant therapy and have a
suitable donor [16,59]. These recommendations are
supported by data from retrospective analyses
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[19,64–70] but have yet to be validated in prospective
trials.

Among patients with FLT3-ITD mutations in CR1,
those who undergo alloHSCT have significantly better
outcomes (e.g. prolonged survival and decreased risk
of relapse) than those who receive chemotherapy
alone [65]. Patients who have FLT3-ITDhigh [19,64,70] or
FLT3-ITDlow with NPM1-WT derive the most benefit
from alloHSCT [19,64]. Despite this, FLT3-ITD remains a
poor prognostic factor following alloHSCT [63,71].
Results from early-phase and retrospective studies sug-
gest that patients with FLT3-ITD AML may benefit from
the use of FLT3 tyrosine kinase inhibitors (TKIs) as
maintenance therapy to prevent relapse following
alloHSCT [19,72–75] – a hypothesis currently being
investigated in clinical trials [76–80]. In the United
States, the TKI sorafenib is often used off-label as post-
transplant maintenance therapy [81].

Importantly, an analysis of alloHSCT rates outside
the clinical trial setting revealed that less than half of
patients who achieved CR went on to receive alloHSCT
in CR1 (49.1%) [82], suggesting that real-world trans-
plant strategies need streamlining.

FLT3 inhibitors

Multiple small-molecule TKIs that target FLT3 are in
development for the treatment of patients with AML
(Table 2) and have demonstrated clinical activity as a
single agent or in combination with chemotherapy
[19,27,58, 72–75,83–98]. Several FLT3 TKIs – including
the multikinase inhibitors midostaurin and sorafenib
and the more-selective FLT3 inhibitors crenolanib, gil-
teritinib, and quizartinib – are currently being eval-
uated or have completed evaluation in phase 3 clinical
trials (Table 3) [58,78,80,99–108]. Each of these FLT3
TKIs has advantages and disadvantages. It has recently
been proposed that multikinase inhibitors, such as
midostaurin and sorafenib, are better suited as first-
line therapy because of the polyclonal nature of AML,
whereas more-selective agents, such as crenolanib,
gilteritinib, and quizartinib, are more appropriate in
the relapsed/refractory (R/R) setting [81]. Furthermore,
even though all FLT3 TKIs have demonstrated
inhibitory activity against ITD mutations, not all of
them target important TKD mutations, such as the
F691L ‘gatekeeper’ resistance mutation [27,84–86,91,
92,95,109].

In the Randomized AML Trial in FLT3 patients <60
Years old (RATIFY), the largest study conducted to
date in adult patients (aged 18 to <60 years) with
newly diagnosed AML with FLT3 mutations (ITD and
TKD), midostaurin in combination with intensive

induction and consolidation chemotherapy and as sin-
gle-agent maintenance therapy reduced the risk of
death compared with placebo by 22% and improved
event-free survival (EFS) and disease-free survival [58].
The benefit in overall survival (OS) and EFS was inde-
pendent of HSCT and FLT3 mutation status (FLT3-
ITDhigh [�0.7], FLT3-ITDlow [<0.7], or FLT3-TKD). Grade
3/4 adverse events were comparable between the two
arms except for rash, which was more common in the
midostaurin arm. Midostaurin, in combination with
induction and consolidation chemotherapy, became
the first FLT3 TKI approved in the United States [37]
and is listed as a potential therapy for patients with
FLT3-mutated AML beginning in version 2 of the
National Comprehensive Cancer Network guidelines
[59] and the 2017 ELN recommendations [16].
Additional ongoing studies are evaluating midostaurin
as frontline treatment for FLT3-ITDþAML (patients
aged 18–70 years) in combination with lower-intensity
therapies and as maintenance therapy following HSCT
[76,79,110,111].

Sorafenib, in combination with standard chemother-
apy, was evaluated in adults (aged 18–60 years) with
newly diagnosed AML in the randomized, placebo-con-
trolled, phase 2 Sorafenib in AML in patients �60
years (SORAML) trial [112]. Sorafenib demonstrated sig-
nificant improvement compared with placebo in EFS
(p¼ .013) and relapse-free survival (p¼ .017) but not
OS (p¼ .382) in all patients; a similar trend in improve-
ment, albeit not significant, was observed in patients
with FLT3-ITD mutations (only 17% of patients had
FLT3-ITD mutations). Sorafenib was associated with an
increased risk of bleeding, fever, and hand-foot syn-
drome [112]. Addition of sorafenib to intensive chemo-
therapy did not result in clinical benefit (no significant
improvements were observed in EFS or OS compared
with placebo, and there was an increased rate of early
death compared with placebo) in older patients (aged
61–80 years) [113]. Sorafenib was the first agent to
demonstrate single-agent activity as maintenance ther-
apy following HSCT. Promising results from several
phase 1 and retrospective studies in patients with
FLT3-ITDþAML [19,72–75,83] have led to a flurry of
new studies evaluating FLT3 TKIs in this setting
(Table 3). Sorafenib showed promising activity in com-
bination with azacitidine and decitabine (phase 2 and
single-institution retrospective studies, respectively) in
patients with FLT3-ITDþ R/R AML [114,115]. Sorafenib
is currently being investigated as frontline treatment
for AML in combination with azacitidine in patients
not eligible for standard chemotherapy and as single-
agent maintenance therapy following alloHSCT
[80,107,116]. In the United States, sorafenib is routinely
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used off-label as single-agent maintenance therapy fol-
lowing transplant [81] and in combination with hypo-
methylating agents as salvage therapy in patients with
FLT3-mutated R/R AML [59,81].

Crenolanib, gilteritinib, and quizartinib have demon-
strated single-agent activity in patients with R/R AML
with FLT3 mutations [89,94,98]. Among these agents,
quizartinib is the most selective FLT3-ITD inhibitor and
has shown the strongest single-agent activity in this
patient population (Table 2). Despite initial safety con-
cerns about QT prolongation with quizartinib in early

studies, it has not been an issue in subsequent studies
evaluating lower doses in which high response rates
have been maintained [89]. Quizartinib is being eval-
uated in a phase 3, randomized study compared with
salvage chemotherapy in patients with FLT3-ITDþ R/R
AML [102] and as frontline treatment for patients with
FLT3-ITDþAML [106].

Crenolanib is currently being investigated in com-
bination with salvage chemotherapy in two random-
ized, placebo-controlled, phase 3 studies in patients
with R/R AML [100,103]. Crenolanib has shown

Table 2. Comparison of FLT3 inhibitors in late-phase clinical trials.
Cell proliferationa

FLT3 inhibitor Mutation IC50, nM Other targets Efficacy and safetyb

Crenolanib (CP-868-596)
[95–98]

ITD 9 PDGFR � Single-agent activity (CR/CRi: 22%) in FLT3-
mutated R/R AMLc

� High response rates (CR/CRi: 81%) in combi-
nation with intensive induction chemotherapy

� Most common any-grade AEs: nausea, vomit-
ing, diarrhea, infections, and rash

� Most common grade 3/4 AEs: infections, rash,
and nausea

D835Y 5
ITD/D835Y 12
ITD/F691L 55

Gilteritinib (ASP2215) [85,94] ITD 2 AXL, LTK � Single-agent activity (CR/CRi: 35%) in FLT3-
mutated R/R AML

� Most common any-grade AEs: diarrhea,
fatigue, and abnormal liver function

� Most common grade �3 AEs: febrile neutro-
penia, infection, and pneumonia

D835Y 2
ITD/D835Y 2
ITD/F691L 22

Midostaurin (PKC412)
[58,86,91–93]

ITD 8 KIT, PDGFR, PKC, VEGFR2 � Limited single-agent activity
� First agent to demonstrate significant survival

benefit (vs placebo) in combination with
chemotherapy

� Most common any-grade AEs: nausea, vomit-
ing, diarrhea, and fatigue

� Most common grade 3/4 AEs: febrile neutro-
penia and infections

� Midostaurin was associated with a significantly
higher risk of rash (vs placebo) when adminis-
tered in combination with chemotherapy

D835Y <10
ITD/D835Y 15
ITD/F691L 10

Quizartinib (AC220) [27,85–90] ITD <1 KIT, PDGFR � Single-agent activity (CR/CRi: 47%) in FLT3-
mutated R/R AML

� Initial QT prolongation concerns no longer an
issue with lower doses (efficacy comparable to
that of higher doses)

� Promising preliminary efficacy in combination
with chemotherapy

� Most common any-grade AEs: nausea, vomit-
ing, diarrhea, pyrexia, and fatigue

� Most common grade 3/4 AEs: febrile neutro-
penia and nausea

D835Y 6
ITD/D835Y 23–35
ITD/F691L 128

Sorafenib [19,27,72–75,83,84] ITD 1–2 KIT, PDGFR, RAF, VEGFR2/3 � Activity as single-agent maintenance therapy
following HSCT and in combination with AZA
as salvage therapy

� In combination with chemotherapy, did not
show a significant OS benefit in younger
(aged 18–60 years) or older (aged 61–80 years)
adult patients

� Most common any-grade AEs: diarrhea, rash,
nausea, and fatigue

� Most common grade 3/4 AEs: rash, abdominal
pain, and weight loss

D835Y >1500
ITD/D835Y >2000
ITD/F691L >2300

AE: adverse event; AML: acute myeloid leukemia; AZA: azacitidine; CR: complete response; CRi: CR with incomplete blood count recovery; FLT3: FMS-like
tyrosine kinase 3; IC50: 50% inhibitory concentration; HSCT: hematopoietic stem cell transplant; ITD: internal tandem duplication; OS: overall survival;
PDGFR: platelet-derived growth factor receptor; PKC: protein kinase C; R/R: relapsed/refractory; VEGFR: vascular endothelial growth factor receptor
aMeasured in Ba/F3 cells transformed with plasmids carrying the indicated FLT3 mutations.
bOnly the most common nonhematologic AEs are listed.
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Table 3. Ongoing phase 3 clinical studies evaluating FLT3 inhibitors in patients with AML.
FLT3 inhibitor, development phase (study ID),
study design (expected accrual) Study status and enrollment (expected primary completion date)

Patients with newly diagnosed AML [58,106–108]
Crenolanib, phase 3 (ARO-021; NCT03258931)
Randomized, double-blind study of crenolanib or midostaurin in combina-

tion with induction and consolidation chemotherapy in patients (aged
18–60 years) with newly diagnosed AML with FLT3 mutations (N¼ 510)

Not yet recruiting; anticipated start date, Nov 2017 (Nov 2022)

Midostaurin, phase 3 (RATIFY; CALGB 10603; NCT00651261)
Randomized, double-blind, placebo-controlled study of midostaurin in

combination with intensive induction and consolidation chemotherapy
and as single-agent maintenance therapy in patients (aged 18–60 years)
with newly diagnosed AML with FLT3 mutations (N¼ 717)

Midostaurin significantly improved OS and EFS across all FLT3 subgroups
tested (high and low ITD-to-WT allelic ratio and TKD); benefit remained
after censoring for HSCT.

Ongoing, but not recruiting; primary data collection has been completeda

Quizartinib, phase 3 (QuANTUM-First; NCT02668653)
Randomized, double-blind, placebo-controlled study of quizartinib in com-

bination with intensive induction and consolidation chemotherapy and
as single-agent maintenance therapy in patients (aged 18–75 years)
with newly diagnosed FLT3-ITDþAML (N¼ 536)

Recruiting; accrual of patients began in May 2016 (Nov 2020)

Sorafenib, phase 3 (NCT01371981)
Randomized, open-label study of bortezomib or sorafenib in combination

with chemotherapy vs chemotherapy alone in patients with newly diag-
nosed AML (N¼ 1750)

Recruiting; accrual of patients began in Jan 2011 (Sep 2018)

Patients not eligible for intensive chemotherapy [105]
Gilteritinib, phase 2/3 (LACEWING; NCT02752035)
Randomized, open-label, three-arm study of gilteritinib alone or in combi-

nation with AZA vs AZA alone in patients (aged �18 years) with newly
diagnosed AML with FLT3 mutations who are not eligible to receive
intensive induction chemotherapy (N¼ 540)

Recruiting; accrual of patients began in Jun 2016 (May 2020)

Patients with R/R AML [100–104]
Crenolanib, phase 3 (ARO-007; NCT02298166)b

Randomized, double-blind, placebo-controlled study of crenolanib in com-
bination with salvage chemotherapy in patients (aged �18 years) with
FLT3 mutation–positive R/R AML (N¼ 276)

Trial was registered in Nov 2014 but has yet to commence enrollment
(Apr 2022)

Crenolanib, phase 3 (ARO-013; NCT03250338)
Randomized, double-blind, placebo-controlled study of crenolanib in com-

bination with salvage chemotherapy in patients (aged 18–75 years)
with FLT3 mutation–positive R/R AML (N¼ 322)

Not yet recruiting; anticipated start date, Oct 2017 (Oct 2020)

Gilteritinib, phase 3 (ADMIRAL; NCT02421939)
Randomized, open-label study of gilteritinib monotherapy vs salvage ther-

apy (LDAC, MEC, AZA, or FLAG-IDA) in patients (aged �18 years) with
R/R AML with FLT3 mutations (N¼ 369)

Recruiting; accrual of patients began in Oct 2015 (Jun 2018)

Gilteritinib, phase 3 (NCT03182244)
Randomized, open-label study of gilteritinib monotherapy vs salvage ther-

apy (LDAC, MEC, or FLAG-IDA) in patients (aged �18 years) with R/R
AML with FLT3 mutations (N¼ 318)

Not yet recruiting; anticipated start date, Sep 2017 (Mar 2020)

Quizartinib, phase 3 (QuANTUM-R; NCT02039726)
Randomized, open-label study of quizartinib monotherapy vs salvage ther-

apy (LDAC, MEC, or FLAG) in patients (aged �18 years) with FLT3-
ITDþ R/R AML (N¼ 363)

Recruiting; accrual of patients began in Apr 2014 (Feb 2018)

Posttransplant maintenance [78,80]
Gilteritinib, phase 3 (MORPHO; NCT02997202)
Randomized, double-blind, placebo-controlled study of gilteritinib as main-

tenance therapy following alloHSCT in adult patients (aged �18 years)
with FLT3-ITDþAML (N¼ 346)

Recruiting; accrual of patients began in Jun 2017 (Aug 2024)

Sorafenib, phase 4 (NCT02474290)
Single-arm, open-label study of sorafenib maintenance therapy in patients

(aged 18–60 years) with FLT3-ITDþAML who received alloHSCT
(N¼ 200)

Recruiting; accrual of patients began in Jun 2015 (May 2018)

Maintenance following chemotherapy [99]
Gilteritinib, phase 3 (GOSSAMER; NCT02927262)
Randomized, double-blind, placebo-controlled study of gilteritinib as main-

tenance therapy following induction/consolidation therapy in patients
with FLT3-ITDþAML in CR1 (N¼ 354)

Recruiting; accrual of patients began in Jan 2017 (Mar 2024)

alloHSCT: allogeneic hematopoietic stem cell transplant; AML: acute myeloid leukemia; AZA: azacitidine; CR1: first complete remission; EFS: event-free sur-
vival; FLAG-IDA: fludarabineþ cytarabineþ granulocyte colony-stimulating factorþ idarubicin; FLT3: FMS-like tyrosine kinase 3; ID: identifier; ITD: internal
tandem duplication; LDAC: low-dose cytarabine; MEC: mitoxantroneþ etoposideþ cytarabine; OS: overall survival; R/R: relapsed/refractory; TKD: tyrosine
kinase domain; WT: wild type.
aThe primary endpoint data for the RATIFY study were recently published [58]. However, Stone et al. [58] indicated that a supportive analysis for the OS
endpoint will be reported at a later date and with a longer follow-up.
bA phase 1 study is also evaluating crenolanib in combination with sorafenib, a FLT3 inhibitor, in patients with R/R hematologic malignancies
(NCT02270788).
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promising activity in combination with intensive
induction (cytarabineþdaunorubicin or idarubicin)
and consolidation chemotherapy in newly diagnosed
FLT3-mutated AML, as demonstrated by the high over-
all response rates (CR/CR with incomplete blood count
recovery: 88%) observed in preliminary analyses of an
ongoing phase 2 study [97]. Crenolanib is also being
evaluated in a phase 3 study (compared with mido-
staurin) in combination with induction and consolida-
tion chemotherapy in newly diagnosed FLT3-mutated
AML [108].

Gilteritinib, a highly selective FLT3-mutant inhibitor
(including F691L), has undergone rapid development
after initial promising single-agent activity [94]; there
are currently five ongoing phase 3 trials. The first two
trials are evaluating gilteritinib compared with salvage
chemotherapy in patients with R/R AML [101,104]. A
third trial is evaluating gilteritinib alone or in combin-
ation with azacitidine compared with azacitidine alone
in patients with newly diagnosed AML who are not eli-
gible for intensive chemotherapy [105]. Two additional
trials are evaluating single-agent gilteritinib main-
tenance therapy following either alloHSCT or induc-
tion/consolidation chemotherapy in patients with
FLT3-ITDþAML [78,99].

Additional studies of FLT3 inhibitors include early-
phase trials of single-agent FLX925 (NCT02335814) and
TAK-659 (NCT02323113) in R/R AML. A study of E6201
in patients with FLT3-mutated R/R AML or older
patients (aged �60 years) with newly diagnosed AML
who are not eligible for standard chemotherapy
(NCT02418000) was recently terminated. Ponatinib, ori-
ginally developed as a BCR-ABL1 inhibitor, has shown
preclinical activity in FLT3-mutated AML models in vitro
[117]; ongoing early-phase trials are evaluating ponati-
nib as frontline treatment for AML (NCT02779283) and
as maintenance therapy in patients with FLT3-ITD AML
in CR1 (NCT02428543).

New role of FLT3 testing: diagnostic marker
that drives therapy

Given the increasing knowledge of AML pathobiology
and advances in FLT3 testing methods, the current
FLT3 testing paradigm is likely to evolve. New risk-
stratification models have been proposed that inte-
grate the identification of additional molecular markers
into the routine diagnostic workup [14,118]. More-rad-
ical proposals forgo cytogenetic testing and suggest
implementing molecular markers as the sole determi-
nant of risk stratification [119]. Adopting such a model
would increase FLT3 testing rates. Currently, some
guidelines recommend FLT3 testing for patients with

normal cytogenetics only [120], but patients with
abnormal cytogenetics also harbor FLT3 mutations [6].

FLT3 testing will continue to be an important prog-
nostic determinant and can guide therapeutic deci-
sions [16,37]; thus, demand for rapid FLT3 testing will
likely increase in the future. There are three major
areas that are critical to ensure that FLT3 testing is
clinically relevant: (1) universal adoption, (2) rapid turn-
around times, and (3) harmonization. First, barriers to
adoption can be overcome by increasing awareness
about and access to FLT3 testing. As previously men-
tioned, FLT3 testing is now recommended for all
patients with AML, and commercial kits are now avail-
able. Second, rapid turnaround times (<8 d) are
required for patients with newly diagnosed AML to be
able to receive midostaurin (the only approved FLT3
inhibitor to date) in combination with chemotherapy
[37,61]. Current recommendations requiring FLT3 test-
ing results within 72 h [16] are well within these rapid
turnaround times. However, it is not clear whether this
benchmark will be met in the real-world setting. Third,
given that the FLT3-ITD-to-WT allelic ratio is a deter-
minant of risk stratification [16], harmonization of FLT3
testing will be important to ensure that comparable
results are achieved regardless of measurement pro-
cedure, time, or location of testing [121,122].
Currently, harmonization of FLT3 testing will likely
focus on PCR-based methods; however, in the future,
NGS approaches that incorporate multigene panels
could be the norm.

Role in detection of minimal residual disease

The term ‘minimal (or measurable) residual disease’
(MRD) is used to define the low levels of leukemic
clones that may persist in patients who achieve a mor-
phological CR and have a higher risk of relapse. These
leukemic clones are not detectable by conventional
microscopy but can be detected by more-sensitive
techniques, including RT-qPCR, multiparameter flow
cytometry, and even NGS [123,124]. Despite its impor-
tance as a prognostic marker, FLT3-ITD was long seen
as an unsuitable marker for MRD monitoring because
of patient-to-patient heterogeneity (e.g. length, inser-
tion site, and allelic ratio) and inherent instability dur-
ing the course of the disease [125–129]. However,
more-sensitive PCR- and NGS-based techniques have
recently been developed [43,130–132] and are becom-
ing commercially available [133]. Nevertheless, the clin-
ical application of these techniques needs to be
validated in randomized clinical trials, as suggested by
current recommendations [16]. Several ongoing, phase
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3 clinical trials evaluating FLT3 TKIs now include MRD
as an endpoint [78,99,103].

NPM1 has also emerged as a reliable marker for
MRD monitoring because (1) NPM1 levels remain sta-
ble throughout disease progression and (2) NPM1 MRD
levels have been clinically shown to correlate with
therapeutic response. However, MRD monitoring has
not yet been incorporated into AML disease manage-
ment [59], given that no standard methods or defini-
tive markers for MRD monitoring have been
established [16]. The ELN is working on developing
recommendations for MRD monitoring, which will
likely include a combination of multiparameter flow
cytometry and molecular-based assays.

Conclusion

Because of the recent results observed with FLT3-
targeted therapies, the FLT3 testing paradigm may
shift from FLT3 being regarded as a prognostic marker
to being viewed as a diagnostic marker that can guide
therapy choice. FLT3 testing guidelines are beginning
to change, including requirements for faster turn-
around times (48–72 h), testing for both ITD and TKD
mutations, and testing regardless of karyotype [16].
These changes will likely be adopted in the United
States, requiring a shift in the order in which FLT3 test-
ing is performed. Currently, in many centers, cytogen-
etic and FLT3 testing is done sequentially (i.e. FLT3
testing follows cytogenetic testing); in the future,
FLT3 testing should be done in parallel with cytogen-
etic testing, as recommended in current diagnostic
guidelines. This parallel approach will require educa-
tion on the importance of FLT3 testing, particularly in
community oncology centers, to ensure widespread
and timely testing. As we gain more insight into the
prognostic impact of complex gene-gene interactions
and molecular-cytogenetic abnormalities – and as new
targeted therapies potentially become available – the
diagnostic and therapeutic landscape of AML is likely
to see major changes. Additional challenges in FLT3
testing will include the need for harmonization of
screening and MRD assays. Nevertheless, it is exciting
to know that these changes and challenges are driven
by gains in the development of therapeutic agents
(evidenced by the large number of phase 3 trials eval-
uating FLT3 TKIs) for this high–unmet need patient
population.
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