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Abstract  

Background: The importance of sex and gender as modulators of disease biology and 

treatment outcomes is well known in other disciplines of medicine, such as cardiology, 

but remains an undervalued issue in oncology. Considering the increasing evidence for 

their relevance,  ESMO decided to address this topic and organized a multidisciplinary 

workshop in Lausanne, Switzerland, on November 30th and December 1st, 2018. 

Design: 20 invited faculty members and 40 selected physicians / scientists participated. 

Relevant content was presented by faculty members on the basis of a literature review 

conducted by each speaker. Following a moderated consensus session, the final 

consensus statements are reported here.

Results: Clinically relevant sex differences include tumor biology, immune system 

activity, body composition and drug disposition and effects. The main differences 

between male and female cells are sex chromosomes and the level of sexual hormones 

they are exposed to. They influence both local and systemic determinants of 

carcinogenesis. Their effect on carcinogenesis in non-reproductive organs is largely 

unknown. Recent evidence also suggests differences in tumor biology and molecular 

markers. Regarding body composition, the difference in metabolically active, fat-free 

body mass is one of the most prominent :in a man and a woman of equal weight and 

height, it accounts for 80% of the man’s and 65% of the woman’s body mass, and is not 

taken into account in body-surface area based dosing of chemotherapy. 
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Conclusion: Sex differences in cancer biology and treatment deserve more attention and 

systematic investigation. Interventional clinical trials evaluating sex-specific dosing 

regimens are necessary to improve the balance between efficacy and toxicity for drugs 

with significant pharmacokinetic differences. Especially in diseases or disease subgroups 

with significant differences in epidemiology or outcomes, men and women with non-sex 

related cancers should be considered as biologically distinct groups of patients, for 

whom specific treatment approaches merit consideration.

Keywords: sex – gender – gender medicine – oncology – pharmacology

Key message: In oncology, sex and gender as modulators of disease biology and 

treatment outcomes are largely unexplored. Considering the increasing evidence for sex 

differences in cancer biology and drug effects, men and women with non-sex related 

cancers should no longer be considered as subgroups, but as biologically distinct groups 

of patients for whom specific treatment approaches merit consideration.
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Introduction

What is gender medicine and why do we need it in oncology? 

Sex and gender-sensitive medicine (SGSM) is an innovative approach to the practice of 

medicine that postulates that biological sex differences, gender identity, role, and relations all 

impact health and disease, and that these differences may have implications for prevention, 

screening, diagnosis, and treatment [1]. The ultimate goal of this field is to learn from these 

differences (or the absence thereof) and improve care and treatment for both men and 

women. ’Sex’ refers to the biological bases that underlie female or male anatomy and 

physiology, while ‘gender’ is defined by the World Health Organization (WHO) as the socially 

constructed roles, behaviours, activities, and attributes that a given society considers 

appropriate for men and women. Hence, while every cell is sexed, every person is gendered  

(Canadian Institute of Health Research; CIHR)[2]. Within living human beings, there is a 

continuous interplay between the two [3]. In contrast to sex, which is generally classified as 

binary, gender is a continuum. While, as authors, we acknowledge gender identities as a non-

binary concept, in this manuscript we limit our discussion to the male-female dichotomy.

While the role of sex differences as modulators of symptoms [4], access to therapy, [5] and 

incidence of serious side effects [6] has been extensively described in cardiology and 

pharmacology [7, 8], oncological research and practice is still largely sex- and gender-blind [9].

This paper provides an overview of sex and/or gender differences in:

1. Tumor biology

2. Immune system activity
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3. Body composition

4. Pharmacology of anticancer drugs

5. Epidemiology, biology and treatment outcomes of melanoma, gastrointestinal cancers, 

and lymphoma as examples for sex and gender differences of non-sex-dependent 

cancers

6. Methodological challenges in the analyses of sex and gender differences in clinical trials 

in oncology

Data were presented and discussed during the European Society for Medical Oncology 

(ESMO) sponsored « Gender Medicine Meets Oncology » Workshop in Lausanne in 2018. 

Relevant content was presented by the faculty members on the basis of a literature review 

conducted by each speaker. No systematic literature review was conducted. Consensus 

questions were agreed upon by faculty members and the consensus statements reported 

here were elaborated during a moderated consensus session which took place at the 

workshop and included input from the faculty and participants. Findings have been 

synthesised in consensus recommendations including an action plan to better understand 

and address these differences.

Background 

From 1997 to 2000, among ten drugs which were withdrawn from the US market due to 

unexpected severe side effects, eight demonstrated greater toxicity in women [10]. According 

to the National Institutes of Health (NIH) “the current overreliance on male subjects in 

preclinical research can obscure key findings related to sex that could guide the planning and 

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dz414/5587762 by guest on 16 O
ctober 2019



7

development of clinical studies”. Consequently, an initiative to guarantee the equal inclusion of 

male and female cells, biological samples or experimental animals in basic research has been 

launched [11]. According to the European Commission “integrating gender/sex analysis in 

research and innovation content helps to improve the scientific quality and societal relevance 

of the produced knowledge, technology and/or innovation”. Resources providing advice on the 

integration of the gender dimension into research and how it can spark creativity as well as 

foster new knowledge have been created by the ongoing H2020 Advisory Group for Gender 

[12] for the European Union (EU) and by the EU/US “Gendered Innovations” project started at 

Stanford University (https://genderedinnovations.stanford.edu). 

Sex differences in tumor biology 

The two main differences between male and female cells in the human body are their sex 

chromosomes and the level of sexual hormones to which they are exposed. The interplay 

between sex chromosomes and hormones influences both local determinants of 

carcinogenesis, such as cancer initiating cells and components of the tumour 

microenvironment, and systemic ones, such as cell metabolism and the immune system [13]. In 

contrast to reproductive organs, limited data exist on the effects of sex hormones and their 

receptors [including estrogen receptor α (ERα), ERβ and the androgen receptor (AR)] on 

carcinogenesis in non-reproductive organs. Down-modulation or loss-of-function mutations of 

NOTCH1 are associated with dysfunctional squamous cell differentiation and development of 

squamous cell carcinoma (SCC) in skin and internal organs. ERβ was shown to directly control 

NOTCH1 expression in differentiation and is often impaired in SCC of various organs. In 
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addition, there are significant differences in gene expression signatures of head and neck and 

lung SCC in men versus women, pointing to a possible molecular basis for disease differences 

between the sexes [14]. Indeed, a comprehensive molecular characterization of various tumour 

types identified extensive sex-biased gene expression signatures and an important number of 

clinically targetable genes with sex bias [15]. The mutation pattern and load in many tumour 

types also shows large sex differences, with some cases of sex-selective gene inactivation [16]. 

Inactivation of the X chromosome seems to confer some protection against carcinogenesis in 

women given that mutations in oncogenes or tumor suppressor genes located on the X 

chromosome are dominant in males [17]. Moreover, about 25% of the X genes escape 

inactivation and are expressed from both alleles, so that their expression is generally higher in 

women[18] . As such, biallelic expression of “escape from X-inactivation tumor-suppressor” 

(EXITS) genes may explain some of the reduced cancer incidence in women [19].

Furthermore, the aging-associated increase of cancer risk is related to stromal fibroblast 

senescence and concomitant cancer associated fibroblast (CAF) activation. Experimental data 

show that not only epithelial cells but also CAFs are under sex hormone control, with variable 

results depending on the tissue [20] [21]. In mouse models, AR loss in dermal fibroblasts 

enhances tumorigenicity of SCC and melanoma cells [22], and AR expression is downregulated 

in dermal fibroblasts underlying premalignant skin cancer lesions as well as in CAFs from 

different skin cancer types [22]. Therefore, sex differences in the biology of non-sex related 

cancers likely contribute to their differences in incidence and outcome [23, 24] and this 

highlights the need to better understand the effect of sex-related genetic and hormonal factors 

on carcinogenesis in non-reproductive tissues. 
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Sex differences in the immune system and immune reactions 

The immune system differs significantly between men and women [25], with differences 

modulated by: 

1. Genetic mediators: sex chromosomes, micro-RNAs located on the X chromosome, escape 

from X-chromosome inactivation, and genetic polymorphisms

2. Hormonal mediators: estradiol, progesterone and androgens

3. Environmental mediators: nutrition and microbiota

4. Age and reproductive status

Generally, adult women mount stronger innate and adaptive immune responses, resulting in a 

faster clearance of pathogens and greater vaccine efficacy, but also contributing to their 

increased susceptibility to inflammatory and autoimmune diseases [25]. Given that the sex 

differences in the number and function of immune cells remain consistent across different 

species from fruit flies to humans, this seems to be an evolutionarily conserved trait [25], which 

may be partly explained by the localization of various genes and micro-RNAs to the X-

chromosome [26] [27]. In addition, the TLR7 gene, a member of the Toll-like receptor (TLR) 

gene family, which is fundamental for recognition of pathogens and activation of innate 

immune effectors, evades silencing by physiological X chromosome inactivation in immune cells 

in women [28]. Due to biallelism, this leads to enhanced TLR7 expression and contributes to the 

higher risk of women developing autoimmune disorders. Sex hormones further modulate the 

interplay between genes and the immune response: progesterone has broad anti-inflammatory 

effects and androgens generally suppress immune cell activity, whereas estradiol enhances cell-
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mediated and humoral immune responses  (for review see [29]). Although some of the sex 

hormone dependent differences in immunity, such as pro-inflammatory responses, are most 

evident at puberty and wane later in life, differences in immune cell numbers and ratio (i.e. 

higher CD4 T cell counts and CD4/CD8 ratios in females) remain constant from birth to old age 

[25].

The impact of the microbiome on immunity and drug responses is becoming increasingly 

recognised [30, 31]. However, the relative contribution of the microbiome is difficult to define 

given that the microbiota composition can be influenced by sex in a body-mass dependent 

manner [32]. 

Sex hormones, in particular androgens, seem critical in shaping the gut microbiota composition. 

In mice, sex differences in gut microbiota appear with the onset of puberty and upon 

castration: the gut microbiota of a castrated male resembles that of a female [33]. Likewise, 

transfer of gut microbiota from males to females increases female testosterone levels and 

protects from autoimmunity [34], while the absence of gut microbiota diminishes sex specific 

gene expression and metabolism [35][30, 31]. 

Sex differences in body composition 

Men and women differ with regard to their body composition. The overall percentage of 

metabolically active fat-free body mass (FFM) is significantly higher in men: in a man and a 

woman of equal weight and height, FFM accounts for 80% and 65% of the man’s and woman’s 

body mass, respectively [36]. Furthermore, the distribution of body fat varies, with men having 
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more visceral and women having more subcutaneous fat [37]. Compared to body surface area 

(BSA) or body mass index (BMI), FFM serves as a better estimate of the metabolically active 

body mass. Lean body weight can be estimated according to a formula published by 

Janmahasatian et al. [36]. To measure body composition in an individual patient, magnetic 

resonance imaging (MRI) is the gold standard. According to analyses performed with MRI, at a 

given BMI of 24 kg/m2, the body fat content varies from 7.8 to 38.3 % in men and between 29.9 

to 44.2 % in women [38]. An excellent and cheaper alternative to MRI is computed tomography 

(CT) of cross-sectional tissues in the lumbar area, which shows a strong correlation with whole 

body adipose tissue, muscle, and lean tissue mass. A single abdominal CT scan of the L4 region 

without contrast enhancement compares well with whole body MRI (r = 0.90 at the L4–L5 

intervertebral space) [37]. While CT scans are more easily carried out and evaluated, MRI 

permits the in vivo quantification of the total adipose tissue and its subdepots, including ectopic 

fat, or fat deposited outside of the classical adipose areas [38]. Of interest, specific body 

composition according to sex not only impacts drug metabolism and toxicity, it is also a 

prognostic factor in clear cell renal carcinoma, where females with high visceral fat had a 

poorer overall survival than females with low and males with high or low visceral fat [39]. 

Sex differences in the pharmacology of anticancer drugs 

One of the basic paradigms in clinical pharmacology is that drug effects are produced by the 

circulating concentration profile of a drug, rather than directly by the dose itself. As a 

consequence, variability in drug disposition may lead to suboptimal response, either lack of 

efficacy or increased toxicity. Nevertheless, most anticancer agents are administered at 
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standard dosages according to body weight or BSA. The lack of accuracy of chemotherapy 

dosing according to BSA and the associated risk of underdosing was recognised over a decade 

ago [40]. While BSA predicts the drug clearance across individuals of various sizes and weights 

relatively well, it is limited by not taking into account the sex differences in FFM. In contrast, 

FFM or lean body weight, which incorporate a sex coefficient and thus better reflect sex 

differences in renal and metabolic clearance, were shown to be the best predictors of drug 

clearance [36, 41]. In addition to differences in metabolism and excretion of commonly used 

drugs, sex differences also exist in drug absorption and distribution, with women having a 

larger distribution volume of lipophilic drugs, whereas men have a larger distribution volume of 

water-soluble drugs. Men tend to have, on average and for similar genotypes, increased 

CYP1A2, CYP2D6, and CYP2E1 activity, resulting in increased metabolism of the drug substrates 

of these enzymes, which is of particular relevance for psychotropic drugs with regard to 

CYP2D6. Women show higher CYP3A4 activity, which is the most abundant cytochrome 

isoenzyme and is integral in metabolising the majority of drugs [42]. Phase II metabolism of 

drugs by the UDP-glucuronosyltransferase (UGT), the sulfotransferases, and the N-acetyl 

transferases, such as 6-mercaptupurine, paracetamol, and oxazepam, is increased in men [43]. 

Furthermore, renal function reveals significant sex differences and is, on average, about 20% 

greater in men [44]. This is taken into account in renal function calculators [45, 46]. A literature 

survey was conducted for this workshop to identify if, and to what magnitude, the patients’ sex 

influences the pharmacokinetics of chemotherapeutic drugs. Among 256 population studies 

screened, only 80 reported sex as a tested covariate on drug elimination and distribution. Of 

these, 23 found a statistically significant impact on pharmacokinetics. In an additional 18 
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studies focusing on drugs excreted by the kidneys, the influence of sex was integrated in the 

estimator of renal function. No sex differences in drug exposure were observed in 57 studies. 

Table 2 summarizes the findings of this review. In drugs with a significant difference in 

pharmacokinetics, the exposure was about 15-25% higher in women. This difference is 

generally smaller than the usually large reported interpatient variability (20-40% coefficient of 

variation) in drug concentrations. 

5-fluorouracil (5-FU) is a prominent example of a drug with a substantial inter-individual 

variability in clearance resulting in large differences in patient exposure and a significant impact 

of the patients’ sex, with an approximately 26% higher exposure in women [47]. In addition, 

pathway-associated gene polymorphisms (e.g. DPD), age, and organ function have been 

associated with the variability of 5-FU clearance. Current dosing based on BSA reaches the 

target concentration of 20 to 30 mgh/L in only about 25% of patients, leaving the majority 

underexposed [48]. The observation of a higher proportion of women reaching therapeutic 

concentrations of 5-FU is independent of anthropometric factors [47], such as body weight or 

BSA [48]. Temozolomide is another example of a drug with a significantly higher clearance in 

men: in a study of 35 glioma patients, the clearance was 19% higher in men [49]. In contrast to 

most anticancer agents, the clearance of temozolomide shows a very small degree of inter-

individual variability as it involves essentially non-enzymatic degradation. Sex differences in 

pharmacokinetics have also been noted for monoclonal antibodies, e.g. panitumumab or 

bevacizumab, with the clearance being reduced by roughly 20% in women [50, 51] and for 

some tyrosine kinase inhibitors (TKIs), such as sunitinib and imatinib [52, 53]. For other 

molecules, the absence of acknowledged sex differences in pharmacokinetics may be the 
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consequence of either insufficient investigation or lack of statistical power in available studies 

rather than true non-existence. In addition to sex differences affecting drug exposure, sex-

related pharmacodynamic differences, which modulate the patients’ sensitivity towards 

adverse effects, may also exist. In conclusion, sex disparities affect the pharmacokinetic profile 

of a large number of anticancer drugs, and are responsible of about 20% overexposure in 

women after administration of standard dosages according to mg/m2, mg/kg or BSA. Given 

their clinical impact, consideration of either the patients’ sex, or other parameters that take 

into account its impact on body composition, such as FFM, is considered as a promising 

approach to individualise treatments and improve the balance between efficacy and toxicity of 

systemic treatments in oncology. 

Sex and gender differences in epidemiology, biology, and treatment outcomes of melanoma, 

gastrointestinal cancers, and lymphoma

Melanoma 

Melanoma is a particularly illustrative example of the differential impact of both sex and gender 

in a non-sex-related disease. Men are less likely to self-detect melanomas, make fewer visits to 

health care providers, have a lower awareness of skin cancer risk and, therefore, are less likely 

to engage in preventive behaviour than women. All these factors result in a diagnostic delay. 

Thus, melanomas in men are likely to be diagnosed when thicker, at an older age, and at a 

higher AJCC stage [54] [55]. Indeed, according to data from 11,774 melanoma patients 

diagnosed between 1978 and 2007 and included in the Munich cancer registry, women had 

smaller lesions located mostly on the lower extremities, while men more often had larger 
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lesions (2.01 to 4.0 cm) located primarily on the trunk (12.0 versus 9.3%, P< 0.001) [55]. 

Therefore, differences in preventive behaviour and clothing choices impact the presentation of 

melanoma at diagnosis. In addition, melanoma-specific survival after diagnosis was higher in 

women, with events occurring in 14.5% of men versus 9.1% of women, and lymph node 

metastasis occurring in less than half as many women (553 women versus 1,331 men, adjusted 

HR 0.80; 95% CI 0.66-0.96) [55].  In a pooled analysis of 2,734 patients included in 5 randomised 

trials, sex emerged as an independent prognostic indicator for survival. In stage III, overall 

survival (OS)  (HR 0.81, 95% CI 0.72-0.91; P < 0.001), disease specific survival (DSS) (HR 0.85, 

95% CI 0.76-0.95; P < 0.01), and relapse-free survival (RFS) (HR 0.86, 95% CI 0.77-0.95; P < 0.01) 

all favoured women. The comparison held for stage IV regarding OS (HR 0.82, 95% CI 0.72-0.93; 

P <. 01), DSS (HR 0.81, 95% CI 0.72-0.92; P < 0.01), and progression-free survival (PFS) (HR 0.79, 

95% CI 0.70-0.88; P < 0.001) [56]. While behavior explains, at least partly, differences in 

incidence and distribution, the survival difference remained significant after adjusting for 

virtually all known prognostic indicators, including age, Breslow thickness, Clark level of 

invasion, body site, histological subtype, and newly emerged prognostic factors, such as 

ulceration, sentinel lymph node status, and mitotic rate [56]. Thus, “a biologic sex trait seems to 

profoundly influence melanoma progression and survival” [56]. The clinical observation of a 

more rapid progression to stage III melanoma in men is in line with the observation that male 

mice develop more liver metastases after injection of melanoma cells [57]. The reasons for the 

greater aggressiveness of melanoma in men are not entirely clear: estrogens have been studied 

extensively, but there is no strong evidence that pregnancy, oral contraceptives, or hormonal 

replacement therapy influences melanoma survival [54, 58-60]. Sex differences in treatment 
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outcomes for immunotherapy have been addressed in two meta-analyses based on aggregate 

data, which however pooled results across indications and treatments and therefore do not 

allow any definitive conclusions [61, 62]. Available data on the toxicity of immune checkpoint 

inhibitors does not suggest any sex differences [63].

Gastrointestinal cancers 

According to data from the Netherlands Cancer Registry, past behaviour, for example smoking 

in pancreatic cancer, explains only in part the generally higher incidence of gastrointestinal (GI) 

cancers in men. While the overall cancer incidence in the Netherlands is rising, especially in 

women, the relative contribution of GI cancers remained stable between 1989 and 2015. A 

striking gender gap exists for oesophageal cancer of the lower third, where the incidence 

(European Standardised Rate) in men has increased between the periods 1990-1995 and 2012-

2017 from 5.8 to 12.1 per 100.000 inhabitants, as compared to 1.3 and 2.5 per 100.000 in 

women. Of interest, this dramatically rising incidence concerns only adenocarcinomas. A 

striking male predominace of in the incidence of esophageal adenocarcinoma is observed in 

different populations [64, 65] with the greatest excess risk in the US, where the male-female 

incidence ratio is as high as 9:1. In fact, hormonal factors, such as higher levels of anti-

inflammatory estrogens, which delay or prevent gastro-esophageal reflux disease (GERD) [66], 

and also androgen concentrations [67, 68] may play a role, but the reasons for this male 

predominance are not fully understood [64, 65]. Furthermore, differences in fat distribution 

might contribute to the persistent inflammation associated with GERD and the development of 

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dz414/5587762 by guest on 16 O
ctober 2019



17

Barrett’s oesophagus [69]. Other examples of sex differences in the biology of GI cancers are as 

follows: in colorectal cancer a higher percentage of tumours with the Consensus molecular 

subtype-1 (CMS-1) [70] is found in women and the risk of developing peritoneal carcinomatosis  

is greater in women in gastric cancers, molecular subtypes are not distributed with the same 

frequency between men and women [71], with a higher rate of microsatellite instability 

occurring in women [72]; sporadic early-onset non-hereditary diffuse gastric cancer is more 

frequent in women and has a distinct mutational profile [73]. In addition, a statistically 

significant and clinically relevant higher toxicity of 5-FU based chemotherapy has been reported 

in different indications [74-76]. In an analysis of the adjusted association between 

haematological grade III/IV adverse events and sex in > 28.000 patients, the OR (95% CI) for 

neutropenia associated with 5-FU was 1.55 (1.37-1.76), for FOLFOX 1.55 (1.25-1.91), for FOLFIRI 

2.01 (1.66-2.43), for single-agent capecitabine 4.07 (1.84-8.00), and for CAPOX 1.45 (1.06-1.99), 

with women being at higher risk. In addition, nausea, vomiting, stomatitis, and diarrhoea were 

more frequently observed in women for most regimens and these observations were 

statistically significant and clinically relevant. In metastatic colon cancer, a close relationship 

between plasma levels, toxicity, and efficacy following 5-FU therapy has been established [48]. 

Individual 5-FU dose-adjustment based on pharmacokinetic monitoring has resulted in a 

significantly improved objective response rate (18.3 vs. 33.6%, P = 0.0004) in a randomized 

phase III-study [77]. The higher clearance of 5-FU in men [47] likely explains the higher toxicity 

of 5-FU in women. This hypothesis is further supported by a prospective study (n=683 patients) 

[78] which addressed the contributions of genetic and non-genetic factors in 5-FU-related 

severe toxicity. Again, in addition to genotype, mode of 5-FU administration and modulation by 
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folinic acid, female sex was found by multivariate analysis to be an independent risk factor for 

severe 5-FU-toxicity. Among patients with grade 3/4 toxicity, a significantly higher percentage 

with the DPDYD*2A variant were men. Thus, the toxicity of 5-FU in women was independent of 

the DPYD genotype and explained by other nongenetic factors. Furthermore, the example of 5-

FU in colon cancer clearly demonstrates that sex differences in toxicity do not impact all effects 

equally: while neutropenia differs significantly between the sexes, no sex difference in the 

incidence of thrombocytopenia has been observed  [79]. Thus, apart from pharmacokinetics, 

pharmacodynamic factors may also play a role in both toxicity and efficacy.  In general, the 

question of why some (e.g. neutropenia), but not other toxicities (e.g. thrombocytopenia) occur 

more frequently in men than in women may theoretically be explained as follows:

a. If significant sex differences in pharmacokinetics are present: these differences may have 

varying impact on different organs or cell lines (independent of the patients’ sex’), or by a sex-

dependent difference in drug sensitivity (which modulates the pharmacokinetic effect).

b. If significant sex differences in pharmacokinetics are absent: occurrence of toxicities may be 

due to differences in drug sensitivity between men and women.

It should also be noted that many chemotherapy drugs and regimens are associated with higher 

rates of neutropenia than of thrombocytopenia. 5-FU is an example of such a drug. This 

differential effect may be caused by various factors, such as a more rapid turnover of 

neutrophils as compared to thrombocytes, with a resulting greater sensitivity of myeloid 

progenitor cells as compared to megakaryocytes. However, in the absence of valid data on sex 

differences in pharmacokinetics for the majority of drugs, the relative contribution of potential 
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differences in pharmacodynamics and pharmacokinetics is difficult to separate. Potential 

variations in tumour biology are another reason why pharmacokinetic differences are unlikely 

to explain all differences in treatment outcomes. The recently presented analysis of the 

XELAVIRI-trial [80] provides an example of sex differences in treatment outcomes, which cannot 

be explained by differences in pharmacokinetics. This randomized trial (n=421) [81] comparing 

upfront versus sequential addition of irinotecan to the combination of a fluoropyrimidine and 

bevacizumab in colorectal cancer demonstrated a significantly higher response rate in men 

(58.3 versus 33.6%, P < 0.01) compared to women (43.1 versus 42.7%, P > 0.9) treated upfront 

with the irinotecan-based combination, which translated to a significant survival benefit for 

men, but a tendency for inferior survival in women. 

Lymphoma 

Lymphoma offers several examples of sex specific outcomes, where male sex is nearly always a 

poor prognostic factor [82]. In Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), 

follicular lymphoma, T-cell non-Hodgkin lymphoma (T-NHL) and, to a lesser extent, Mantle cell 

lymphoma, adult men have a poorer prognosis and survival that is exacerbated by increasing 

age [83]. Despite a limited understanding of the underlying reasons, female hormonal status 

likely plays a role. The female advantage begins with puberty, increases until menopause, and 

then declines [84, 85]. In experimental models ERβ activation inhibits lymphoma growth, 

vascularization and dissemination [86]. Furthermore, differences in drug metabolism, with 

impact on toxicity and efficacy, are likely: sex differences in the haematologic toxicity of 

chemotherapy for HL have been reviewed elsewhere [87]. Low acute haematological toxicity, 
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which is significantly more frequent in men (44 vs 19%, P < 0.00001), predicts disease 

recurrence, and male sex is an independent negative prognostic factor in HL [82, 88] . The 

question of whether either increasing the chemotherapy doses in men not presenting any 

toxicity after the first cycle or upfront calculation of chemotherapy doses according to fat-free 

body mass instead of BSA may improve their prognosis is currently open. Data from prepubertal 

children receiving treatment according to the paediatric BFM NHL protocol [89] and DLBCL 

patients in the 2016 German Childhood Cancer Registry [90] underline the current paradigm 

that the female survival advantage in lymphoma requires the hormonal changes of puberty. On 

a molecular level, analysis of DLBCL global transcriptome data from the Cancer Genome Atlas 

associated female sex with decreased interferon signalling, cell cycle, and PD-1 signalling [91]. A 

Swedish study demonstrated a particularly pronounced survival improvement following the 

introduction of rituximab as standard lymphoma therapy in elderly women [92], which was 

explained by reduced clearance with resulting longer exposure times of rituximab [93] [94]. 

Consequently, the SEXIE-R-CHOP-14 trial investigated whether increasing the dose of rituximab 

for elderly men (61-80 years of age) with DLBCL to 500 mg/m2 while treating women with the 

standard dose of 375 mg/m2 could improve their outcome. In this academic trial, which was 

prematurely closed due to insufficient funding, PFS was increased by 32.5% (P = 0.039), with a 

trend (30%) for better OS (P = 0.076) [95] in men treated with the increased rituximab dose, 

demonstrating the feasibility and potential benefit of sex-specific dose adaptations (Figure 1).

Methodological challenges
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Methodological hurdles concerning analyses of trials in oncology start with the adequate 

representation of men and women, which should correspond to the distribution of the 

incidence of the type of cancer studied. In general, women were adequately represented in 

clinical registration trials [96]. However, this may not be the case for certain types of cancer 

[97]. In randomised clinical trials, sex should be a standard stratification factor, also noting it is 

a good stratification candidate since each group corresponds to a large fraction of the total 

sample size. Subgroup analyses of efficacy, treatment exposure, safety, and risk benefit ratio 

according to sex are required by the FDA for any submission dossier. Possible prognostic and 

predictive effects, as well as competing risks like deaths from other causes, which may occur at 

different frequencies, need to be explored [98]. The need for adequate reporting of results by 

sex in publications should be reemphasized. Testing for sex differences in safety studies is 

challenging due to the multiplicity of tests leading to an increase of false positive results. To 

pre-specify testing of certain selected adverse events by sex is considered as important and 

may help in the better interpretation of safety results. Reporting of the number and types of 

analyses conducted and whether they were pre-specified is important to allow the reader to 

judge the strength of the evidence. Discussions of the results of subgroup analyses should also 

address issues such as whether the study was sufficiently powered to detect minimal important 

differences, the plausibility of the findings, their biological rationale, and reproducibility. In 

patient-level analyses, sex should be used as an independent variable in multivariable Cox 

models. A significant interaction indicates a differential effect. Meta-analyses of individual 

patient data, with the examination of overall interactions, are the preferred option to better 

understand treatment results by sex. However, registry data could also provide further 
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important information. The question of what constitutes a clinically meaningful difference in 

toxicity and/or efficacy needs further definition. Importantly, incidence, severity, and duration 

of toxicities need consideration in this context. In conclusion, while sex differences in outcomes 

of clinical trials in oncology need interpretation with the same caution as any subgroup analysis, 

they may reflect real differences in cancer biology or treatment effects. This is especially 

relevant in diseases or disease subgroups with significant differences in epidemiology or 

outcomes, or for drugs with significant differences in pharmacokinetics, where men and women 

with non sex-related cancers should be considered as biologically distinct groups of patients, 

and for whom specific treatment approaches merit consideration and further investigation 

(Table 1). 
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Figure 1: 

Sex and gender differences may influence cancer treatment outcomes in different ways. All 

effects are modulated by age. 
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1. Major open questions and challenges

 To investigate systematically sex disparities in cancer incidence and outcomes. 

Where sex disparities in either epidemiology or treatment outcomes are identified, 

further research is necessary to understand their biological basis, and evaluate if 

sex-specific treatment modifications might improve outcomes. Importantly, 

wherever possible, sex disparities should be investigated in different age groups. 

Potential interactions between sex and age need to be considered and understood.

 To review in depth the published literature on sex differences in pharmacokinetics 

of all types of anticancer drugs. Where gaps in the published literature are identified 

and/ or methodology or patient numbers are insufficient, and for drugs currently 

used in clinical practice, further research is necessary. 

 BSA-based dosing for chemotherapy needs to be reevaluated. For drugs with 

established sex differences in pharmacokinetics and a clinically relevant impact on 

treatment efficacy and/or toxicity, interventional clinical trials evaluating 

alternative approaches for dose determination and adjustments, for example 

according to fat-free body mass (either calculated according to [28] or determined 

by CT [29]), or according to sex- and BSA, are necessary. The magnitude of the 

difference in drug disposition, dose-response relationship, and inter-individual 

variability of drug clearance all need consideration in the definition of strategies for 

dose modification according to sex need to be tested in clinical trials. 
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  Sex differences may not only be limited to drug treatment: Differences in anatomy 

and/ or tumour biology may also affect outcomes of surgery, radiotherapy, or 

combined modality treatments and need further investigation.

2. How should these challenges be addressed?

 Considering frequency and severity of adverse events of anticancer treatments, 

large meta-analyses on the basis of individual patient data are the best approach to 

understand how sex and age modulate their effects.  

 A uniform methodology for data collection, which defines the major parameters 

likely to affect the impact of the patients’ sex and gender on treatment outcomes 

in oncology, needs to be developed. The EORTC Elderly Minimal Dataset designed 

to harmonize data collection within geriatric oncology studies could be used as an 

example.

3. Points to be considered in the analysis, interpretation and reporting of clinical trial 

results:

 Data should be reported according to sex in clinical trials, and potential sex 

differences need consideration in their design and analysis. Such differences may 

concern baseline condition and prognosis, treatment efficacy, as well as incidence, 

type, and severity of toxicities. 

 Planned and administered dose intensities, dose reductions and treatment 

interruptions due to toxicity and serious adverse events according to sex and age 

need consideration and reporting in publications. 
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4. Implications for drug development and clinical research?

 Cell and animal studies need a balanced inclusion of samples and animals of both 

sexes as appropriate for the question studied [9]. Clinical trials of all phases need to 

ensure that the number of men and women enrolled is proportionate to the 

incidence of the cancer type. Sex should become a standard stratification factor in 

Phase III studies. General concepts for integrating sex in basic and clinical research 

in other disciplines have been published [88, 89]. 

 While results of early phase trials should be screened for signals suggestive of sex 

differences in efficacy and/ or toxicity, late phase trials need to disaggregate results 

by sex and age and report both individually and make raw data available.

  The evaluation of potential pharmacokinetic differences between men and women 

is particularly important during early drug development, in pharmacokinetic trials 

and for dose determination. Once a drug has demonstrated its efficacy, the 

question of potential differences in efficacy and toxicity, their pharmacokinetic or 

other biological basis, and if a dose modification according to sex could improve the 

balance between efficacy and toxicity, should be addressed.

 Analyses of biomarkers and molecular tumour profiles should be disaggregated by 

sex and age, especially in diseases with sex differences in epidemiology or 

outcomes. Such analyses may help to understand sex disparities in tumour biology.

5. What should be included in the curriculum for medical oncologists?
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 Medical oncologists need to be aware of sex differences in pharmacokinetics, as 

well as the potential impact of the patients’ sex on tumour biology [81].

6. Implications for clinical practice:

 Prior to the definition of any recommendations for clinical practice, interventional 

clinical trials investigating the need and demonstrating the benefit of sex-specific 

treatment strategies or dose modifications are recommended. 

 If significant sex differences in toxicity or outcomes are identified, patients need to 

be informed about these differences

Table 1. Consensus statements
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Class / Drug, Name Indication n (Men)/(Women) Variability on CL 
(CV%)

Relative change in women vs men

Angiogenesis Inhibitors

Aflibercept [99] Advanced solid tumors 767/739 31% Clfu
Vfu

- 16%
- 19%

Bevacizumab [50, 
100]

Gastric cancer ; solid 
tumors

1101/949 26% CL - 14% to - 27%

Antineoplastic Agents : Antimetabolites

5-fluorouracil [47, 
101] and metabolite

GI malignancies ; 
metastatic colorectal 
cancer

74 /42 22-40% CL
CLmet

- 14% to - 27%
- 18%

Myeloablative Agents

Busulfan [102] Marrow transplantation 904/689 22% V +  7%

Antineoplastic Agent :  Alkylating agents

Temozolomide [49, 
103]

Glioma, glioblastoma, 
melanoma

303/177 5-10% CL - 19 to 27%

Mephalan [104] Advanced malignancies 22/42 45% CL - 19%

Trabectedin [105] PD study 232/467 51% V
Keo

- 17%
+ 22%

Antineoplastic Agents : Alkaloids

Paclitaxel [106, 107] Solid tumors 159/160 CL - 30%
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Vmax +14%

Irinotecan (SN38) 
[108-110]

Solid tumors, 
glioblastoma

67/58 47% CL - 30% to 38%

Antineoplastic Agent : Antibodies

Rituximab [111] Lymphoma 16/13 19% CL - 21%

Table 2: Anticancer agents with relevant differences in clearance between men and women.

CL: total clearance; CLfu: clearance of the unbound fraction; V: volume of distribution; Vfu: volume of distribution of the unbound fraction; 
V max: maximal metabolization rate; CLmet: metabolic clearance (i.e. the part of the total clearance corresponding to metabolism); 
CLren: renal clearance (i.e. the part of the total clearance corresponding to excretion); CL = CLmet + CLren; Keo: equilibration constant between 
central and effect compartments. CV%: interindividual variability of the total clearance
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