JAMA Oncology | Original Investigation

Association of Dietary Fiber and Yogurt Consumption With Lung Cancer Risk A Pooled Analysis

Jae Jeong Yang, PhD; Danxia Yu, PhD; Yong-Bing Xiang, MD; William Blot, PhD; Emily White, PhD; Kim Robien, PhD; Rashmi Sinha, PhD; Yikyung Park, ScD; Yumie Takata, PhD; DeAnn Lazovich, PhD; Yu-Tang Gao, MD; Xuehong Zhang, ScD; Qing Lan, PhD; Bas Bueno-de-Mesquita, PhD; Ingegerd Johansson, PhD; Rosario Tumino, MD; Elio Riboli, MD; Anne Tjønneland, PhD; Guri Skeie, PhD; J. Ramón Quirós, MD; Mattias Johansson, PhD; Stephanie A. Smith-Warner, PhD; Wei Zheng, MD, PhD; Xiao-Ou Shu, MD, PhD

IMPORTANCE Dietary fiber (the main source of prebiotics) and yogurt (a probiotic food) confer various health benefits via modulating the gut microbiota and metabolic pathways. However, their associations with lung cancer risk have not been well investigated.

OBJECTIVE To evaluate the individual and joint associations of dietary fiber and yogurt consumption with lung cancer risk and to assess the potential effect modification of the associations by lifestyle and other dietary factors.

DESIGN, SETTING, AND PARTICIPANTS This pooled analysis included 10 prospective cohorts involving 1 445 850 adults from studies that were conducted in the United States, Europe, and Asia. Data analyses were performed between November 2017 and February 2019. Using harmonized individual participant data, hazard ratios and 95% confidence intervals for lung cancer risk associated with dietary fiber and yogurt intakes were estimated for each cohort by Cox regression and pooled using random-effects meta-analysis. Participants who had a history of cancer at enrollment or developed any cancer, died, or were lost to follow-up within 2 years after enrollment were excluded.

EXPOSURES Dietary fiber intake and yogurt consumption measured by validated instruments.

MAIN OUTCOMES AND MEASURES Incident lung cancer, subclassified by histologic type (eg, adenocarcinoma, squamous cell carcinoma, and small cell carcinoma).

RESULTS The analytic sample included 627 988 men, with a mean (SD) age of 57.9 (9.0) years, and 817 862 women, with a mean (SD) age of 54.8 (9.7) years. During a median follow-up of 8.6 years, 18 822 incident lung cancer cases were documented. Both fiber and yogurt intakes were inversely associated with lung cancer risk after adjustment for status and pack-years of smoking and other lung cancer risk factors: hazard ratio, 0.83 (95% CI, 0.76-0.91) for the highest vs lowest quintile of fiber intake; and hazard ratio, 0.81 (95% CI, 0.76-0.87) for high vs no yogurt consumption. The fiber or yogurt associations with lung cancer were significant in never smokers and were consistently observed across sex, race/ethnicity, and tumor histologic type. When considered jointly, high yogurt consumption with the highest quintile of fiber intake showed more than 30% reduced risk of lung cancer than nonyogurt consumption with the lowest quintile of fiber intake (hazard ratio, 0.67 [95% CI, 0.61-0.73] in total study populations; hazard ratio 0.69 [95% CI, 0.54-0.89] in never smokers), suggesting potential synergism.

CONCLUSIONS AND RELEVANCE Dietary fiber and yogurt consumption was associated with reduced risk of lung cancer after adjusting for known risk factors and among never smokers. Our findings suggest a potential protective role of prebiotics and probiotics against lung carcinogenesis.

JAMA Oncol. doi:10.1001/jamaoncol.2019.4107 Published online October 24, 2019. Supplemental content

Author Affiliations: Author affiliations are listed at the end of this article.

Corresponding Author: Xiao-Ou Shu, MD, PhD, Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Ste 600, Nashville, TN 37203 (xiao-ou.shu@vumc.org).

rebiotics and probiotics have attracted increasing attention owing to their roles in modulating the gut microbiota and their anti-inflammatory and antioxidant properties.¹⁻³ Prebiotics, typically high in fiber-rich foods, are nondigestible compounds that can be fermented by gut microbiota and also modulate gut microbiota,⁴ while probiotics are living microorganisms, commonly included in yogurt, that can improve the composition or function of gut microbiota to bring health benefits to the host.⁵ Epidemiologic studies have assessed dietary fiber and yogurt, the main sources of prebiotics and probiotics in human diets, and have reported associations of yogurt or fiber with reduced risks of various diseases, including metabolic disorders,^{6,7} cardiovascular diseases,^{8,9} gastrointestinal cancers,¹⁰⁻¹² and premature death.^{8,13} Recently, it has been shown that certain gut microbes are involved in lung inflammation,¹⁴ suggesting a potential novel role of dietary fiber and yogurt against lung disease.

Several cohort studies have linked dietary fiber intake to enhanced lung function¹⁵ and reduced risk of chronic obstructive pulmonary disease (COPD)¹⁶⁻¹⁸ and of deaths from respiratory diseases.¹³ Prospective studies have also shown that fiber-rich, plant-based dietary patterns and fruit/vegetable consumption are significantly associated with decreased risk of lung cancer.¹⁹⁻²¹ However, direct evidence linking dietary fiber intake to lung cancer risk is scarce. The UK Million Women Study showed no association between dietary fiber and lung cancer risk among female never smokers.²² For yogurt consumption, a recent meta-analysis that included 2 cohort studies and 3 case-control studies reported a nonsignificant inverse association with lung cancer risk.²³ Currently, no epidemiologic studies have examined the potential synergis-

AARP indicates National Health Institute-AARP Diet and Health Study; EPIC, European Prospective Investigation into Cancer and Nutrition; HPFS, Health Professionals Follow-up Study; IWHS, Iowa Women's Health Study; NHS, Nurses' Health Study; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; SCCS, Southern Community Cohort Study; SMHS, Shanghai Men's Health Study; SWHS, Shanghai Women's Health Study, and VITAL, Vitamins and Lifestyle Study.

Key Points

Question Does an association exist between risk of lung cancer and habitual intakes of dietary fiber (the main source of prebiotics) or yogurt (a probiotic food)?

Findings In this pooled analysis of more than 1.44 million individuals from the United States, Europe, and Asia, high intakes of dietary fiber or yogurt were individually associated with reduced risk of lung cancer, independent of all known risk factors. A potential synergistic association of fiber and yogurt consumption with lung cancer risk was also observed.

Meaning Dietary fiber and yogurt may be individually and jointly associated with reduced risk of lung cancer.

tic association of fiber and yogurt (ie, prebiotics and probiotics) with lung cancer risk.

Herein, we assess the associations of dietary fiber and yogurt intakes with lung cancer risk in a pooled analysis of more than 1.44 million individuals from the United States, Europe, and Asia. We evaluated the potential fiber or yogurt association with lung cancer among all participants and by sex, race/ ethnicity, and tumor histologic type. We further assessed potential modifications of any associations by lifestyle and other dietary factors (eg, smoking status and saturated fat intake). Finally, we assessed the joint association of dietary fiber and yogurt consumption with lung cancer risk.

Methods

Study Populations

This study, performed from November 2017 to February 2019, analyzed deidentified, individual participant data from a lung cancer pooling project that included 10 prospective cohort studies conducted in the United States, Europe, and Asia.^{24,25} Participating cohorts included the National Institutes of Health-AARP Diet and Health Study (NIH-AARP), Health Professionals Follow-up Study (HPFS), Nurses' Health Study (NHS), Iowa Women's Health Study (IWHS), Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), Southern Community Cohort Study (SCCS), Vitamins and Lifestyle Study (VITAL), European Prospective Investigation into Cancer and Nutrition (EPIC), Shanghai Men's Health Study (SMHS), and Shanghai Women's Health Study (SWHS). All studies were approved by the institutional review boards and ethics committees of the hosting institutes.

Of the initial study participants, we excluded individuals who had a history of any cancer, except nonmelanoma skin cancer, at cohort enrollment or no data on smoking history or implausible energy intake (beyond 3 standard deviations of the log-transformed cohort- and sex-specific mean). We further excluded the first 2 years of observation, and participants who developed any cancer or were censored within 2 years to minimize the potential reverse causation due to preclinical cancerrelated dietary changes (**Figure 1**). The characteristics of our analytic sample of 1 445 850 participants are summarized in eTable 1 in the Supplement.

Diet and Outcome Assessment

At the baseline survey of each cohort, dietary information was collected using validated food frequency questionnaires or semiquantitative dietary questionnaires. Details of dietary assessment and validity have been described previously; the correlation coefficients between dietary questionnaires and dietary records/recalls ranged from 0.48 to 0.86 for dietary fiber.²⁶⁻³⁶ Few studies reported specific validation results for yogurt, but in the NHS and HPFS, yogurt assessment showed a high validity; the correlation coefficient with criterion was 0.74.²⁹ Dietary fiber intake (grams per day) was calculated by multiplying the frequency of food consumption by portion size and fiber content, based on population-specific food composition tables or the enzymatic-gravimetric methods of the Association of Official Analytical Chemists,³⁷ and categorized into sex-specific quintiles. Yogurt consumption (grams per day) was calculated by multiplying the frequency of consumption by study-specific portion size. The SMHS and SWHS had no data on yogurt consumption, which was uncommon when the cohort members were enrolled; thus, these 2 cohorts were excluded from any yogurt-related analyses. Considering that 20% to 76% of participants did not consume any yogurt (eTable 1 in the Supplement), we categorized yogurt consumption into 3 groups: a nonconsumption group (0 g/d) and 2 consumption groups (low or high: \leq or > the sex-specific median intake, respectively). All dietary intakes were adjusted for total energy intake using the residual method.38

Incident cancer cases and deaths were identified via linkage to cancer and death registries, follow-up surveys, and review of medical records. The main study outcome was primary lung cancer (*International Classification of Diseases*, *Ninth and Tenth Revisions*: codes 162 and C34, respectively), subclassified by tumor histologic type: adenocarcinoma, squamous cell carcinoma, small cell carcinoma, or others. The timeto-event analysis was started 2 years from the date of enrollment and censored on the date of any cancer diagnosis, death, loss to follow-up, or the latest follow-up/linkage, whichever came first.

Statistical Analysis

Baseline characteristics across fiber and yogurt intakes were compared using the χ^2 test or the general linear model. Spearman correlations of dietary fiber and yogurt intakes were assessed. We adopted a 2-stage individual participant data meta-analysis method.³⁹ Using Cox proportional hazards models, we first estimated the cohort-specific hazard ratios (HRs) and 95% CIs, using the lowest quintile for fiber and nonconsumption for yogurt as the reference; then all estimates were pooled using random-effects meta-analysis given the existence of between-study heterogeneity.^{40,41} In consideration of varying enrollment times and age ranges across participating cohorts, Cox models were stratified by birth year (5-year intervals from <1925 to ≥1960) and enrollment year (<1985, 1990, 1995, 2000, and ≥2005). Follow-up time was treated as the time scale. The global goodness-of-fit test with Schoenfeld residuals confirmed no violation against the proportional hazards assumption. Covariates included age, smoking status (never, former, or current), smoking

pack-years (continuous), energy intake (continuous), sex, race/ethnicity (white, black, Asian, or other), educational level (<high school, high school graduate, vocational/ professional, college, ≥university), obesity status (body mass index, calculated as weight in kilograms divided by height in meters squared: <18.5, 18.5-24.9, 25.0-29.9, or ≥30.0 for Westerners, and <18.5, 18.5-22.9, 23.0-27.4, or ≥27.5 for Asian persons), history of diabetes (yes or no), family history of lung cancer (yes or no), physical activity (tertiles of total physical active hours), menopause (yes or no), and intakes of saturated and polyunsaturated fat (sex-specific quintiles). Missing covariates were imputed in each cohort, separately (eAppendix in the Supplement). Linear trend was tested using a continuous variable with median values of each fiber or yogurt intake category. Potential nonlinear associations were evaluated using restricted cubic splines. Stratified analyses were conducted to assess the potential effect modification by sex, race/ethnicity, tumor histologic type, and other risk factors. Interaction was tested in each study by the likelihood-ratio test, entering a cross-product term of fiber or yogurt consumption and the stratification variables as both ordinal variables; then the estimates were pooled using random-effects meta-analysis.⁴² The joint association of fiber and yogurt with lung cancer risk was assessed in a pooled data analysis using the lowest intake of both fiber and yogurt as the reference.

A series of sensitivity analyses were conducted using (1) the common or the cohort- and sex-specific cutoffs; (2) fixed-effect meta-analysis or pooled individual participant data analysis; (3) the energy density method for total energy adjustment; and (4) further adjustment for red meat and vegetable intakes. To better evaluate potential confounding by smoking, we conducted a sequential adjustment for smoking intensity: (1) the minimal model, including age, energy intake, sex, and race/ethnicity; (2) the model adjusted for all covariates except smoking-related variables; (3) the model adjusted for all other covariates and smoking status; and (4) the final model (main results) that included all covariates, including smoking status and pack-years. Analyses were performed using SAS Enterprise Guide, version 7.1 (SAS Institute Inc), or Stata, version 12 (StataCorp). Two-sided P values less than .05 were considered statistically significant.

Results

The analytic sample included 627 988 men, with a mean (SD) age of 57.9 (9.0) years, and 817 862 women, with a mean (SD) age of 54.8 (9.7) years (eTable 1 in the Supplement). During the median follow-up period of 8.6 years (after excluding the first 2 years), 18 822 cases of incident lung cancer were identified. The median (interquartile range) intake of dietary fiber was 18.4 (14.1-23.1) g/d. Overall, 62.2% of participants reported yogurt consumption, among whom the median (interquartile range) intake was 23.3 (5.7-73.4) g/d. Basic characteristics of lung cancer cases are summarized in eTable 2 in the Supplement.

jamaoncology.com

Table 1. Baseline Characteristics of Study Population by Total Fiber Intake and Yogurt Consumption^a Total Fiber Intake^b Yogurt Consumption^c Characteristic Q1 Q2 Q3 Q4 Q5 None Low High Men (n = 627 988) Population, No. 125 597 125 598 125 597 125 598 125 598 264 808 149 562 149 562 Age, y 57.4 58.6 58.2 57.7 57.6 59.8 58.7 55.1 Race/ethnicity, % White 92.5 93.7 93.5 92.1 56.5 86.4 92.1 97.5 Black 3.8 4.7 4.8 4.7 5.1 6.6 6.2 1.5 Asiand 397 89 27 16 14 13 17 10 44.0 40.0 47.9 University degree or above, % 34.4 42.2 44.2 45.5 45.5 BMI 25.9 27.1 27.0 26.6 27.2 27.3 27.0 26.6 Diabetes, % 5.8 7.4 7.9 8.4 9.3 9.0 8.2 6.0 Family history of 3.2 2.1 2.0 2.0 1.9 2.1 2.0 1.3 lung cancer, % Smoking status, % 24.1 29.6 32.0 36.1 25.6 29.3 37.2 Never 27.2 36.8 51.9 53.2 51.8 50.7 55.7 54.2 46.8 Former Current 39.1 20.9 17.2 16.2 13.2 18.7 16.5 16.0 Ever smokers, pack-years^e 34.4 33.9 31.2 28.8 26.9 35.5 31.5 25.2 Alcohol intake, g/d 18.7 15.5 13.4 10.3 19.0 18.0 14.9 27.1 Low-level physical 44.1 27.4 23.5 21.8 19.2 25.5 20.9 21.2 activity, % Dietary intake^g Energy, kcal/d 2047 2122 2189 2239 2249 2164 2195 2261 Total fiber, g/d 10.7 15.6 19.2 23.1 31.0 19.2 21.3 23.3 Yogurt, g/d 7.7 14.5 21.4 29.1 35.4 0.0 4.5 82.5 Saturated fat, g/d 18.9 24.0 25.0 25.0 22.8 23.3 23.8 27.5 Polyunsaturated fat, g/d 11.6 14.7 15.115.1 14.9 15.1 15.2 14.3 Women (n = 817 862) Population, No. 163 572 163 572 163 573 163 572 163 573 230174 257 125 257 139 54.9 54.3 56.2 Age, y 55.4 55.7 53.8 55.7 53.5 Race/ethnicity, % White 85.7 92.6 94.9 95.3 91.7 91.6 97.7 58.4 Black 6.0 6.3 5.1 4.1 4.0 7.6 7.4 2.0 Asian^d 35.6 8.0 2.3 1.0 0.7 0.7 1.0 0.3 University degree 17.0 24.5 26.0 25.7 27.5 19.6 28.5 29.2 or above, % BMI 26.0 26.4 26.1 25.9 25.5 26.6 26.6 25.4 Diabetes, % 4.7 5.1 5.0 4.9 5.1 6.0 5.7 3.5 Family history of 3.8 2.6 1.9 1.5 1.3 2.1 2.6 1.2 lung cancer, % Smoking status, % 49.2 57.0 60.7 55.0 58.8 52.9 56.4 Never 52.8 19.7 28.2 28.0 27.8 28.8 27.4 30.4 29.1 Former Current 19.6 19.0 17.0 15.2 12.4 23.4 16.7 14.5 Among ever smokers, 27.9 22.6 19.3 17.0 15.5 24.0 20.8 16.3 pack-years^e 7.7 6.3 5.7 4.7 7.2 Alcohol intake, g/d 67 65 66 Low-level physical activity, %^f 28.0 23.2 28.7 28.3 25.2 45.1 30.6 26.4 69.9 72.3 67.9 64.9 Menopause, % 63.9 74.5 72.9 61.9

(continued)

E4 JAMA Oncology Published online October 24, 2019

© 2019 American Medical Association. All rights reserved.

Table 1. Baseline Characteristics of Study Population by Total Fiber Intake and Yogurt Consumption^a (continued)

	Total Fiber	Intake ^b				Yogurt Cor	sumption ^c	
Characteristic	Q1	Q2	Q3	Q4	Q5	None	Low	High
Dietary intake ^g								
Energy, kcal/d	1673	1747	1818	1846	1829	1729	1830	1812
Total fiber, g/d	10.2	14.7	17.9	21.3	27.8	17.5	18.9	20.7
Yogurt, g/d	21.4	32.1	42.4	50.3	57.0	0.0	11.3	111.1
Saturated fat, g/d	16.8	21.2	22.8	23.0	21.1	21.5	20.9	24.1
Polyunsaturated fat, g/d	10.5	12.1	12.1	12.1	12.2	12.5	12.5	11.8

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); SMHS, Shanghai Men's Health Study; SWHS, Shanghai Women's Health Study; Q, quintile.

^a Baseline characteristics across quintiles of fiber intake and yogurt consumption groups were compared using the χ^2 test for categorical variables or the general linear model for continuous variables. Data are mean values for continuous variables or proportions for categorical variables. Differences across quintiles or yogurt consumption groups for all listed variables are statistically significant (P < .05).

^b Based on the sex-specific quintiles.

 $^{\rm c}$ Defined as none (O g/d), low (\leq sex-specific median intake), and high (>sex-specific median intake); participants from the SMHS and SWHS and

Men with high fiber or yogurt intake had higher educational attainment, that is, university degree or above (lowest vs highest, 34.4% vs 45.5% for fiber; 40.0% vs 47.9% for yogurt), and healthy lifestyles, including less current smoking (39.1% vs 13.2% for fiber; 18.7% vs 16.0% for yogurt), less alcohol consumption (27.1 vs 10.3 g/d for fiber; 19.0 vs 14.9 g/d for yogurt), and more physical activity than those with low intakes (all P < .05) (**Table 1**). Among men, a history of diabetes was associated with high fiber intake (lowest vs highest, 5.8% vs 9.3%) but not with yogurt (9.0% vs 6.0%). Fiber and yogurt intakes were similarly associated with these characteristics in women (Table 1). For both men (r = 0.26) and women (r = 0.24), fiber and yogurt intakes were correlated (P < .001).

Both fiber and yogurt intakes were inversely associated with lung cancer risk (Table 2; and eFigure 1 and eFigure 2 in the Supplement). Individuals with the highest quintile of fiber intake showed a 17% lower risk (multivariable-adjusted HR, 0.83; 95% CI, 0.76-0.91; *P* < .001 for trend) than those with the lowest quintile. Compared with nonconsumers, low yogurt consumers had a 15% decreased risk for lung cancer (multivariable-adjusted HR, 0.85; 95% CI, 0.81-0.90), and high yogurt consumers had a 19% decreased risk for lung cancer (multivariable-adjusted HR, 0.81; 95% CI, 0.76-0.87) (both *P* < .001 for trend). The inverse associations were consistently observed in men and women and across histologic type. When stratified by race/ethnicity, we found significant inverse associations among white individuals, the largest racial/ethnic group of this study (for the highest vs lowest quintile of fiber: multivariable-adjusted HR, 0.83; 95% CI, 0.75-0.92; for high vs no yogurt consumption: multivariableadjusted HR, 0.82; 95% CI, 0.77-0.88); whereas, black and Asian persons showed nonsignificant inverse associations, which were likely because of the much smaller sample sizes or lower intake levels (median [interquartile range] intakes

those having invalid data on yogurt consumption were not included.

^d For fiber intake, included were Asian participants in the US and Chinese cohorts; for yogurt consumption, only Asian participants in the US cohorts were included. No data were available on yogurt consumption in the SMHS and SWHS.

^e Calculated among former and current smokers as (No. of cigarettes smoked per day × No. of years smoked)/20.

^f The lowest tertile of total physical activity measured by hours or metabolic equivalent hours.

^g Energy-adjusted mean intake per day using the residual method.

of fiber and yogurt: 19.3 [15.4-23.7] and 25.8 [6.2-77.1] g/d for white persons; 17.8 [13.9-22.6] and 4.9 [1.7-19.0] g/d for black persons; and 10.8 [8.9-13.3] and 6.6 [1.9-29.6] g/d for Asian persons, respectively). Results from sequential adjustment models indicated that the primary associations with lung cancer attenuated after adjusting for smoking variables among black persons (eTable 3 in the Supplement). Spline analyses suggested a linear association for lung cancer and fiber intake but a nonlinear association for yogurt consumption (eFigure 3 in the Supplement).

Age or alcohol consumption might modify the fiber or yogurt intake association with lung cancer (**Figure 2**). An inverse association of fiber was stronger in participants 57 years of age or younger (the median age of the study populations) than in those older than 57 years (HR, 0.75; 95% CI, 0.60-0.92; vs HR, 0.87; 95% CI, 0.79-0.96; P = .02 for interaction). The association of fiber or yogurt with lung cancer was more evident among alcohol consumers than among nondrinkers, especially heavy alcohol consumers (for fiber: HR, 0.77; 95% CI, 0.62-0.96; P = .02 for interaction; for yogurt: HR, 0.76; 95% CI, 0.68-0.85; P = .01 for interaction).

We found a potential joint association of fiber and yogurt with lung cancer risk (**Table 3**). Individuals who reported high yogurt consumption with the highest quintile of fiber intake had a 33% reduced lung cancer risk (95% CI, 0.61-0.73) compared with those who did not consume yogurt and had the lowest quintile of fiber intake (P = .06 for interaction). When stratified by smoking status, HRs (95% CIs; P for interactions) were 0.74 (0.67-0.83; P = .04) among current, 0.66 (0.59-0.73; P = .45) among former, and 0.69 (0.54-0.89; P = .02) among never smokers for the highest fiber intake with yogurt consumption vs the lowest fiber intake without yogurt consumption. Similar results were found in all sensitivity analyses (eTable 4, eTable 5, and eTable 6 in the Supplement).

jamaoncology.com

Table 2. Risk of Lung Canc	er by Dietary Fiber	Intake and Yogurt	Consumption ^{a,b}							
	Total Fiber Intake	oc.					Yogurt Consumption ^d			
Variable	Q1	Q2	Q3	Q4	Q5	P Value for Trend	None	Low	High	P Value for Trend
Total study populations										
Lung cancer cases, No.	5686	4603	3440	2809	2284		9897	4326	2898	
HR (95% CI) ^e	1 [Reference]	0.96 (0.90-1.01)	0.87 (0.81-0.94)	0.85 (0.80-0.90)	0.83 (0.76-0.91)	<.001	1 [Reference]	0.85 (0.81-0.90)	0.81 (0.76-0.87)	<.001
Men										
Lung cancer cases, No.	2687	2288	1898	1540	1288		5621	1897	1293	
HR (95% CI)	1 [Reference]	0.97 (0.88-1.07)	0.94 (0.83-1.08)	0.83 (0.74-0.94)	0.84 (0.71-1.00)	.001	1 [Reference]	0.83 (0.79-0.88)	0.76 (0.71-0.82)	<.001
Women										
Lung cancer cases, No.	2999	2315	1542	1269	966		4276	2429	1605	
HR (95% CI)	1 [Reference]	0.95 (0.88-1.03)	0.83 (0.78-0.89)	0.87 (0.80-0.94)	0.84 (0.77-0.93)	<.001	1 [Reference]	0.89 (0.80-0.98)	0.86 (0.78-0.95)	.002
Race/ethnicity										
White										
Lung cancer cases, No.	4193	4085	3148	2634	2114		9254	3973	2797	
HR (95% CI)	1 [Reference]	0.94 (0.88-0.99)	0.85 (0.78-0.93)	0.85 (0.79-0.91)	0.83 (0.75-0.92)	<.001	1 [Reference]	0.85 (0.81-0.90)	0.82 (0.77-0.88)	<.001
Black										
Lung cancer cases, No.	194	191	183	123	116		484	253	65	
HR (95% CI)	1 [Reference]	0.99 (0.80-1.24)	1.18 (0.94-1.48)	0.90 (0.69-1.16)	0.85 (0.65-1.12)	.26	1 [Reference]	0.82 (0.69-0.96)	0.83 (0.63-1.10)	.51
Asian										
Lung cancer cases, No.	1243	291	73	28	21		60	37	14	
HR (95% CI)	1 [Reference]	1.10 (0.96-1.26)	0.99 (0.77-1.29)	0.70 (0.41-1.18)	0.88 (0.47-1.65)	66.	1 [Reference]	1.05 (0.63-1.75)	0.73 (0.37-1.46)	.46
Adenocarcinoma										
Lung cancer cases, No.	2035	1719	1293	1060	897		3446	1718	1149	
HR (95% CI)	1 [Reference]	0.99 (0.90-1.09)	0.88 (0.81-0.96)	0.86 (0.78-0.94)	0.86 (0.75-0.99)	<.001	1 [Reference]	0.90 (0.84-0.96)	0.85 (0.79-0.92)	.001
Squamous cell carcinoma										
Lung cancer cases, No.	972	814	589	478	374		1879	740	449	
HR (95% CI)	1 [Reference]	0.90 (0.81-0.99)	0.79 (0.69-0.89)	0.76 (0.67-0.86)	0.74 (0.61-0.89)	<.001	1 [Reference]	0.84 (0.77-0.92)	0.76 (0.67-0.86)	.007
Small cell carcinoma										
Lung cancer cases, No.	763	636	453	372	273		1458	597	355	
HR (95% CI)	1 [Reference]	0.95 (0.85-1.06)	0.86 (0.73-1.02)	0.89 (0.77-1.03)	0.90 (0.66-1.24)	.21	1 [Reference]	0.87 (0.71-1.05)	0.79 (0.68-0.92)	.001
Abbreviations: HR, hazard ra	tio; Q, quintile.				^d Defin	ed as none (0 g/d), lo	ow (≤sex-specific media	an intake), and high (:	>sex-specific medial	n intake).
^a Participants from the Shang	ghai Men's and Wom	en's Health Studies v	vere included in the	fiber-lung cancer	e All H	s were stratified by h	birth year and enrollmer	it year and were adju	isted for age, total e	nergy, smoking status,
		כשווז וווווסוזלוווחכווס	ב ב נטווטו וא.			ung pack-years, sex, r cal activity lavel mer	ace/eunincuty, euucation onainsal status in wome	iai ievei, uuesity stati mand intakas of sati	i viabetes, iaiiliy i iirated and nolviins:	iistory or iurig caricer, strirated fat
<pre>~ Estimated by random-effect</pre>	ts meta-analysis.					כמו מכתוגווא וכאכון וווכו				
^c Based on the sex-specific q.	uintiles.									

JAMA Oncology Published online October 24, 2019 **E6**

jamaoncology.com

Research Original Investigation

 $\ensuremath{\textcircled{\sc 0}}$ 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Northwestern University User on 10/24/2019

Figure 2. Risk of Lung Cancer by Dietary Fiber Intake and Yogurt Consumption in Subgroups of Participants

A Dietary fiber intake: highest vs lowest quintile

Subgroup	No. of Cases	HR (95% CI)		P Value for Interaction
Age, y				
≤57	5534	0.75 (0.60-0.92)	_	02
>57	13288	0.87 (0.79-0.96)		.02
Smoking status, pack years				
Never	2302	0.77 (0.61-0.97)		
Former ≤30	2623	0.88 (0.75-1.04)		
Former >30	4778	0.79 (0.71-0.89)		.20
Current ≤30	2734	0.82 (0.67-1.01)		
Current >30	6385	0.97 (0.80-1.18)		
Weight				
Under	384	0.84 (0.27-2.56)	$\longleftrightarrow \bullet \bullet \bullet$	
Normal	7853	0.87 (0.75-1.02)		72
Over	7548	0.82 (0.72-0.93)		.37
Obese	3037	0.83 (0.68-1.00)		
Alcohol consumption				
None	5479	0.95 (0.83-1.09)		
Moderate	9385	0.85 (0.76-0.95)		.02
Heavy	3958	0.77 (0.62-0.96)		
Physical activity				
Low	5575	0.87 (0.73-1.03)		
Medium	8674	0.82 (0.73-0.92)		.36
High	4573	0.86 (0.74-1.00)		
Saturated fat				
<21.5 g/d	9884	0.82 (0.76-0.89)		40
≥21.5 g/d	8938	0.86 (0.73-1.02)		.40
Follow-up				
<9 y	15352	0.91 (0.80-1.03)		14
≥9 y	3470	0.96 (0.82-1.11)		.14
		0	.6 0.8 1.0 1.2	
			Adjusted HR (95% CI)	

Hazard ratios (HRs) and 95% CIs were estimated by random-effects meta-analyses based on the sex-specific quintiles of total dietary fiber intake or yogurt consumption (none, 0 g/d; low, ≤sex-specific median intake; high, >sex-specific median intake). Participants from the Shanghai Men's and Women's Health Studies were included in the fiber-lung cancer analysis only. No data were available on yogurt consumption in these 2 cohorts. Age, saturated fat intake, and follow-up time were grouped by their median values. Heavy drinkers were defined as alcohol consumers who reported ethanol consumption of more than 28 g per day in men or more than 14 g per day in

No. of HR P Value for Subaroup Cases (95% CI) Interaction Age, y ≤57 4866 0.81 (0.74-0.90) .07 >57 12255 0.82 (0.75-0.90) Smoking status, pack years Never 1459 0.85 (0.73-0.98) Former ≤30 2529 0.73 (0.61-0.87) 0.83 (0.76-0.91) Former >30 4665 44 Current ≤30 2441 0.89 (0.79-1.00) Current >30 6027 0.85 (0.74-0.96) Weight Under 308 1.04 (0.62-1.74) 0.80 (0.74-0.86) Normal 7202 -.18 Over 6787 0.83 (0.75-0.93) Obese 2824 0.85 (0.76-0.96) Alcohol consumption None 4253 0.91 (0.83-1.00) 0.82 (0.76-0.88) .01 Moderate 9114 Heavy 3754 0.76 (0.68-0.85) Physical activity 0.82 (0.71-0.95) Low 4613 Medium 8338 0.82 (0.75-0.89) .44 0.84 (0.77-0.92) High 4170 Saturated fat 0.82 (0.77-0.88) <21.5 g/d 8289 .95 ≥21.5 g/d 8832 0.81 (0.73-0.90) Follow-up <9 y 0.83 (0.76-0.91) 14128 .23 2993 0.86 (0.77-0.95) ≥9 y 1.2 0.6 0.8 1.0 Adjusted HR (95% CI)

B Yogurt consumption: high vs none

women; and moderate drinkers were defined as alcohol consumers who reported ethanol consumption of greater than 0 to 28 g per day in men or greater than 0 to 14 g per day in women. Physical activity levels were defined as tertiles of total physical active hours or metabolic equivalent hours. All models were stratified by birth year and enrollment year and adjusted for age, total energy, smoking status, smoking pack-years, sex, race/ethnicity, educational level, obesity status, diabetes, family history of lung cancer, physical activity level, menopausal status in women, and intakes of saturated and polyunsaturated fat.

Discussion

In this pooled analysis of more than 1.44 million individuals from 10 prospective cohorts, we found that high intakes of dietary fiber and yogurt were associated with a 15% to 19% reduced risk of lung cancer after controlling for a wide range of risk factors, including smoking status and pack-years, and putative dietary confounders, such as intakes of saturated and polyunsaturated fat.²⁵ In addition, we found a potential synergistic association of fiber and yogurt with lung cancer risk: high intakes of both fiber and yogurt were associated with a 33% reduced risk of lung cancer. All the individual or joint associations were observed in the analyses stratified by smoking status. Our findings suggest that the health benefits of fiber and yogurt may include protection against lung cancer in addition to their well-established beneficial effects on cardiovascular disease and gastrointestinal cancer.^{6-8,10,11}

A protective role of dietary fiber against COPD has been previously suggested. In the NHS and HPFS, 2 participating cohorts in our study, the highest quintile of fiber intake was associated with a 33% lower risk of COPD than the lowest quintile.¹⁷ Similarly, in a Swedish cohort, men who consumed dietary fiber of 36.8 g/d or more showed a 38% lower risk of COPD than those with an intake of less than 23.7 g/d.¹⁸ Lung cancer, particularly squamous cell carcinoma, and COPD share underlying molecular pathways.⁴³ In addition, a highfiber diet was linked to better lung function in a doseresponse manner in US populations.¹⁶ Findings of our study are in line with these previous studies on COPD and lung function, but are not in line with the finding of the UK Million Women Study, which reported a null association between

jamaoncology.com

Table 3. Joint Associatior	of Dietary Fibeו ו	r Intake and Yogurt Con	isumption With L	ung Cancer Risk ⁶	d,e						
	Total Fiber Int	take									
	Q1		Q2		Q3		Q4		Q5		PValue
Yogurt Consumption ^c	Lung Cancer Cases, No.	HR (95% CI) ^d	Lung Cancer Cases, No.	HR (95% CI)	Lung Cancer Cases, No.	HR (95% CI)	Lung Cancer Cases, No.	HR (95% CI)	Lung Cancer Cases, No.	HR (95% CI)	for Interaction
Total populations											
None	3148	1 [Reference]	2669	0.96 (0.91-1.01)	1846	0.91 (0.86-0.97)	1293	0.88 (0.82-0.94)	941	0.86 (0.80-0.93)	
Low	926	0.87 (0.81-0.93)	1040	0.80 (0.74-0.85)	917	0.78 (0.73-0.85)	773	0.74 (0.68-0.81)	670	0.74 (0.68-0.81)	.06
High	362	0.91 (0.82-1.02)	592	0.82 (0.75-0.90)	585	0.68 (0.62-0.75)	715	0.76 (0.69-0.83)	644	0.67 (0.61-0.73)	
Current smokers											
None	2047	1 [Reference]	1415	0.95 (0.89-1.02)	854	0.92 (0.85-1.00)	524	0.90 (0.81-0.99)	350	0.95 (0.84-1.07)	20
High or low	773	0.94 (0.87-1.02)	769	0.84 (0.77-0.92)	643	0.77 (0.70-0.84)	628	0.82 (0.74-0.91)	465	0.74 (0.67-0.83)	-
Former smokers											
None	974	1 [Reference]	1080	0.96 (0.88-1.04)	847	0.90 (0.82-0.98)	647	0.86 (0.78-0.96)	498	0.81 (0.73-0.91)	L
High or low	443	0.83 (0.74-0.93)	705	0.77 (0.70-0.85)	679	0.70 (0.64-0.78)	661	0.67 (0.60-0.74)	660	0.66 (0.59-0.73)	C 1 .
Never smokers											
None	127	1 [Reference]	174	0.91 (0.72-1.15)	145	0.81 (0.63-1.03)	122	0.78 (0.60-1.01)	93	0.67 (0.50-0.89)	ç
High or low	72	0.68 (0.51-0.91)	158	0.76 (0.60-0.96)	180	0.73 (0.58-0.93)	199	0.77 (0.61-0.98)	189	0.69 (0.54-0.89)	20
Abbreviations: HR, hazardı	atio; Q, quintile.				lana	ysis only. No data w	rere available on	yogurt consumpt	ion in these 2 col	norts.	
^a Based on the sex-specific	quintiles of total c	dietary fiber intake.			H IIA ^b	Rs were estimated	in a single mode	Istratified by coh	ort, birth year, ar	nd enrollment yea	r and were adjusted
^b Defined as none (O g/d), I analyses, low and high yo and to improve the stabili	ow (≤sex-specific gurt consumption by of risk estimate:	c median intake), and high were combined into 1 grc is.	 (>sex-specific medulot) up to increase the 	dian intake); for stı sample size of the	ratified for a strata diabo satur	ge, total energy, sn etes, family history rated and polyunsa	noking status, sm of lung cancer, p iturated fat.	ioking pack-years hysical activity le	, sex, race/ethnic vel, menopausal	ity, educational le status in women,	vel, obesity status, and intakes of

^c Participants from the Shanghai Men's and Women's Health Studies were included in the fiber-lung cancer

© 2019 American Medical Association. All rights reserved.

fiber intake and lung cancer risk among never smokers (823 cases included; HR, 0.98; 95% CI, 0.88-1.09 per 5 g/d increase).²² For yogurt, a recent meta-analysis, including 2 cohort studies and 3 case-control studies, reported a nonsignificant inverse association between yogurt and lung cancer risk (1294 cases included; relative risk, 0.88; 95% CI, 0.62-1.25 for high vs low yogurt consumption).²³ In addition to its much smaller sample size, that meta-analysis was limited by heterogeneity in study design and different covariate adjustments. The large sample size and the availability of individual-level data in the present study overcame the limitations of the previous studies.

The health benefits of fiber and yogurt may be rooted in their prebiotic and probiotic properties, through which they independently or synergistically modulate gut microbiota.¹⁻³ Dietary fiber is nondigestible by humans but can be fermentable by gut microbiota to generate short-chain fatty acids.⁴⁴ Emerging evidence has suggested that the beneficial effects of short-chain fatty acids on host immune and metabolism are not restricted to the gut but reach various organs, including the lungs.^{14,44,45} Animal studies have shown that a high-fiber diet can remodel the immunological environment in the lungs by changing the composition of both gut and lung microbiota.⁴⁵ Yogurt, a nutrient-dense food commonly containing strainspecific probiotics, can also enhance gut microbial communities. As an immunomodulator, furthermore, probiotics mediate cytokine secretion and proliferation and differentiation of immune cells.³ There are high expectations that yogurt may help prevent lung diseases; in vivo and in vitro studies have shown that some probiotic strains inhibit lung metastasis, enhance natural killer cell activity, and have antitumor and antiinflammatory activities.46,47

In the present study, the inverse association of lung cancer risk with dietary fiber and yogurt consumption was more evident for squamous cell carcinoma and among participants with proinflammatory conditions (eg, heavy consumers of alcohol), suggesting that fiber and yogurt may exert beneficial effects on lung carcinogenesis via anti-inflammatory mechanisms. Previous studies have shown that a high-fiber diet and yogurt consumption were independently inversely associated with proinflammatory cytokines and inflammatory responses.^{7,48} Emerging evidence has also indicated a synergistic effect of prebiotics and probiotics on host health; fermentation of prebiotics can promote the colonization of healthpromoting probiotic bacteria, such as Bifidobacterium and Lactobacillus, in the gastrointestinal tract,³ which can improve the gut microbial ecosystem, and in turn, increase the beneficial physiological effects of bacteria. Our present findings indicated that the combination of prebiotics (fiber) and probiotics (yogurt) may be stronger against lung cancer than either component alone. This finding suggests a potential role of increasing both prebiotic and probiotic consumption in lung cancer prevention.

Strengths and Limitations

To the best of our knowledge, this is the largest prospective study investigating the association of dietary fiber and yogurt consumption with lung cancer risk, and no previous epi-

jamaoncology.com

demiologic study has investigated a joint association of fiber and yogurt with lung carcinogenesis. Over 1.44 million individual participant data, including diverse racial/ethnic groups and long-term observations, enabled us to comprehensively investigate the potential roles of dietary fiber, yogurt, and their joint activity in the development of lung cancer, with consideration of a wide range of potential confounders and effect modifiers. Detailed data on individuals' smoking history, as well as tumor histology, allowed for in-depth analyses on the fiber or yogurt intake association with lung cancer. The first 2 years of follow-up were excluded from analyses to minimize potential reverse causation due to preclinical cancerrelated dietary changes; although the data are not included in the supplemental information, the results remained robust even when the first 4 years of follow-up were excluded.

Nevertheless, we acknowledge several limitations. First, we had no data on types (eg, soluble vs insoluble) and food sources of fiber (eg, from grains, vegetables, or fruits); thus, we could not investigate the association by fiber subtypes. Data were also unavailable on types of yogurt (eg, sugar content and bacteria strains), which may differ across populations and confer different health effects. In addition, we could not evaluate possible changes in fiber and yogurt consumption over time because of data unavailability, which might result in attenuated associations.⁴⁹ Second, despite the comprehensive adjustments for covariates, we cannot completely rule out the influence of residual confounding by smoking or unmeasured confounders, such as socioeconomic status and a history of COPD. Third, although we found similar results after adjusting for putative dietary risk factors, it is still possible that the observed associations were confounded by other dietary constituents associated with fiber and yogurt. Fourth, although the inverse association pattern was consistently observed across racial/ethnic groups, the associations for black or Asian persons failed to reach statistical significance in multivariable-adjusted models. Whereas those results are likely attributable to a lack of statistical power owing to small sample sizes or lower intake levels, a true racial/ethnic-specific association cannot be completely ruled out. Further investigation is needed to evaluate the association of fiber or yogurt consumption with lung cancer risk among those populations. Finally, measurement errors in dietary assessment may exist, which is likely to bias the estimates toward the null.50,51

Conclusions

In this large pooled analysis, after adjusting for a wide range of known or putative lung cancer risk factors, we found that dietary fiber and yogurt consumption were both associated with reduced risk of lung cancer. For the first time to our knowledge, a potential synergistic association between fiber and yogurt intakes on lung cancer risk was observed. Although further investigation is needed to replicate these findings and disentangle the underlying mechanisms, our study suggests a potential novel health benefit of increasing dietary fiber and yogurt intakes in lung cancer prevention.

ARTICLE INFORMATION

Accepted for Publication: July 13, 2019. Published Online: October 24, 2019. doi:10.1001/jamaoncol.2019.4107

Author Affiliations: Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee (Yang, Yu, Blot, Takata, Zheng, Shu); State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (Xiang, Gao); Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee (Blot, Zheng, Shu); Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (White); Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia (Robien); Division of Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland (Sinha, Lan); Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri (Park); College of Public Health and Human Sciences, Oregon State University, Corvallis (Takata); Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis (Lazovich); Masonic Cancer Center, University of Minnesota, Minneapolis (Lazovich); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Zhang); Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment. Bilthoven, the Netherlands (Bueno-de-Mesquita); Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands (Bueno-de-Mesquita); Department of Odontology, Umeå University, Umeå, Sweden (I. Johansson); Cancer Registry and Histopathology Department, Civic-M.P. Arezzo Hospital, American Samoa, Ragusa, Italy (Tumino); Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom (Riboli); Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark (Tjønneland); Denmark Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (Tjønneland); Department of Community Medicine, UIT, The Arctic University of Norway, Tromsø, Norway (Skeie); Public Health Directorate, Asturias, Spain (Quirós); Genetic Epidemiology Group, International Agency for Research on Cancer, Lyons, France (M. Johansson); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Smith-Warner); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Smith-Warner).

Author Contributions: Dr Shu had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Yang and Yu contributed equally *Concept and design*: Yang, Yu, Takata, Zhang, Bueno-de-Mesquita, Tumino, Riboli, Tjønneland, Shu.

Acquisition, analysis, or interpretation of data: Yang,

Yu, Xiang, Blot, White, Robien, Sinha, Park, Lazovich, Gao, Zhang, Lan, Bueno-de-Mesquita, I. Johansson, Tiønneland, Skeie, Ouirós, M. Johansson, Smith-Warner, Zheng, Shu. Drafting of the manuscript: Yang, Yu, Sinha, Shu. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Yang, Yu, White, Gao, Zhang, Smith-Warner, Shu. Obtained funding: Sinha, Takata, Tumino, Tjønneland, Quirós, Zheng, Shu. Administrative, technical, or material support: Xiang, Robien, Sinha, Zhang, Bueno-de-Mesquita, I. Johansson, Tumino, Riboli, Skeie, Quirós, M. Johansson, Shu. Supervision: Gao, Bueno-de-Mesquita, Tumino, Riboli, Shu

Conflict of Interest Disclosures: Drs Blot, Shu, Zheng, and Yu reported receiving grants from the National Institutes of Health during the conduct of the study. Drs Robien and Takata reported receiving grants from the National Cancer Institute during the conduct of the study. No other disclosures were reported.

Funding/Support: This work was supported in part by grants from the National Institutes of Health (R03 CA183021 and UM1 CA182910). Dr Yu was supported by the Vanderbilt University Medical Center Faculty Research Scholars Program.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; the collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Additional Contributions: We thank the staff and investigators of all the participating cohorts for their dedicated efforts, and we are in debt to the study participants, without whom this work would not be possible. Mary Shannon Byers, PhD, Vanderbilt University Medical Center, assisted in preparing and editing the manuscript. She received no financial compensation from our group for her assistance.

REFERENCES

1. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. *Nature*. 2016;535(7610):56-64. doi:10.1038/ nature18846

2. Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. *Nat Rev Nephrol.* 2016;12(3):169-181. doi:10.1038/nrneph.2015.191

3. Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. *Therap Adv Gastroenterol*. 2013;6(1):39-51. doi:10.1177/1756283X12459294

4. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. *Nat Rev Gastroenterol Hepatol*. 2015;12 (5):303-310. doi:10.1038/nrgastro.2015.47

5. Food and Agriculture Organization of the United Nations; World Health Organization. *Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation*. Rome, Italy: Food and Agriculture Organization of the United States; 2006.

6. Anderson JW, Baird P, Davis RH Jr, et al. Health benefits of dietary fiber. *Nutr Rev.* 2009;67(4):188-205. doi:10.1111/j.1753-4887.2009.00189.x

7. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. *Ann Med*. 2015;47(6):430-440. doi:10.3109/ 07853890.2015.1071872

8. Dehghan M, Mente A, Rangarajan S, et al; Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. *Lancet*. 2018;392(10161):2288-2297. doi:10. 1016/S0140-6736(18)31812-9

9. Cho SS, Qi L, Fahey GC Jr, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. *Am J Clin Nutr.* 2013;98(2): 594-619. doi:10.3945/ajcn.113.067629

 Aune D, Chan DSM, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. *BMJ*. 2011; 343:d6617. doi:10.1136/bmj.d6617

11. Pala V, Sieri S, Berrino F, et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. *Int J Cancer*. 2011;129 (11):2712-2719. doi:10.1002/ijc.26193

12. Zhang Z, Xu G, Ma M, Yang J, Liu X. Dietary fiber intake reduces risk for gastric cancer: a meta-analysis. *Gastroenterology*. 2013;145(1):113-120. doi:10.1053/j.gastro.2013.04.001

13. Park Y, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. *Arch Intern Med*. 2011;171(12): 1061-1068. doi:10.1001/archinternmed.2011.18

14. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. *Eur J Immunol.* 2018;48(1):39-49. doi:10.1002/eji. 201646721

15. Butler LM, Koh W-P, Lee H-P, Yu MC, London SJ. Dietary fiber and reduced cough with phlegm: a cohort study in Singapore. *Am J Respir Crit Care Med*. 2004;170(3):279-287. doi:10.1164/rccm. 200306-7890C

16. Kan H, Stevens J, Heiss G, Rose KM, London SJ. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. *Am J Epidemiol*. 2008;167(5): 570-578. doi:10.1093/aje/kwm343

17. Varraso R, Willett WC, Camargo CA Jr. Prospective study of dietary fiber and risk of chronic obstructive pulmonary disease among US women and men. *Am J Epidemiol*. 2010;171(7):776-784. doi:10.1093/aje/kwp455

18. Kaluza J, Harris H, Wallin A, Linden A, Wolk A. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men. *Epidemiology*. 2018;29(2):254-260. doi:10. 1097/EDE.000000000000750

19. Gnagnarella P, Maisonneuve P, Bellomi M, et al. Nutrient intake and nutrient patterns and risk of lung cancer among heavy smokers: results from the COSMOS screening study with annual low-dose CT.

Eur J Epidemiol. 2013;28(6):503-511. doi:10.1007/ s10654-013-9803-1

20. Kane-Diallo A, Srour B, Sellem L, et al. Association between a pro plant-based dietary score and cancer risk in the prospective NutriNet-santé cohort. *Int J Cancer*. 2018;143(9): 2168-2176. doi:10.1002/ijc.31593

21. Vieira AR, Abar L, Vingeliene S, et al. Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. *Ann Oncol*. 2016;27(1): 81-96. doi:10.1093/annonc/mdv381

22. Pirie K, Peto R, Green J, Reeves GK, Beral V; Million Women Study Collaborators. Lung cancer in never smokers in the UK Million Women Study. *Int J Cancer*. 2016;139(2):347-354. doi:10.1002/ijc.30084

23. Yang Y, Wang X, Yao Q, Qin L, Xu C. Dairy product, calcium intake and lung cancer risk: a systematic review with meta-analysis. *Sci Rep.* 2016;6:20624. doi:10.1038/srep20624

24. Yu D, Takata Y, Smith-Warner SA, et al. Prediagnostic calcium intake and lung cancer survival: a pooled analysis of 12 cohort studies. *Cancer Epidemiol Biomarkers Prev.* 2017;26(7): 1060-1070. doi:10.1158/1055-9965.EPI-16-0863

25. Yang JJ, Yu D, Takata Y, et al. Dietary fat intake and lung cancer risk: a pooled analysis. *J Clin Oncol.* 2017;35(26):3055-3064. doi:10.1200/JCO.2017.73. 3329

26. Thompson FE, Kipnis V, Midthune D, et al. Performance of a food-frequency questionnaire in the US NIH-AARP (National Institutes of Health-American Association of Retired Persons) Diet and Health Study. *Public Health Nutr.* 2008;11 (2):183-195. doi:10.1017/S1368980007000419

27. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. *Am J Epidemiol*. 1992;135(10):1114-1126. doi:10.1093/oxfordjournals. aje.a116211

28. Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. *Am J Epidemiol*. 1985;122(1):51-65. doi:10.1093/oxfordjournals.aje. a114086

29. Salvini S, Hunter DJ, Sampson L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. *Int J Epidemiol*. 1989;18(4):858-867. doi:10.1093/ije/18.4.858

30. Munger RG, Folsom AR, Kushi LH, Kaye SA, Sellers TA. Dietary assessment of older Iowa women with a food frequency questionnaire: nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews. *Am J Epidemiol*. 1992;136(2):192-200. doi:10.1093/ oxfordjournals.aje.a116485

31. Subar AF, Thompson FE, Kipnis V, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America's Table Study. *Am J Epidemiol*. 2001;154(12):1089-1099. doi:10. 1093/aje/154.12.1089

32. Signorello LB, Munro HM, Buchowski MS, et al. Estimating nutrient intake from a food frequency questionnaire: incorporating the elements of race and geographic region. *Am J Epidemiol*. 2009;170 (1):104-111. doi:10.1093/aje/kwp098

33. White E, Patterson RE, Kristal AR, et al. VITamins And Lifestyle cohort study: study design and characteristics of supplement users. *Am J Epidemiol*. 2004;159(1):83-93. doi:10.1093/aje/ kwh010

34. Slimani N, Ferrari P, Ocké M, et al. Standardization of the 24-hour diet recall calibration method used in the European prospective investigation into cancer and nutrition (EPIC): general concepts and preliminary results. *Eur J Clin Nutr.* 2000;54(12):900-917. doi:10.1038/ sj.ejcn.1601107

35. Villegas R, Yang G, Liu D, et al. Validity and reproducibility of the food-frequency questionnaire used in the Shanghai men's health study. *Br J Nutr.* 2007;97(5):993-1000. doi:10.1017/ S0007114507669189

36. Shu XO, Yang G, Jin F, et al. Validity and reproducibility of the food frequency questionnaire used in the Shanghai Women's Health Study. *Eur J Clin Nutr.* 2004;58(1):17-23. doi:10.1038/sj.ejcn. 1601738

37. Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF, Harland BF. Determination of total dietary fiber in foods and food products: collaborative study. *J Assoc Off Anal Chem*. 1985;68 (4):677-679.

38. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. *Am J Clin Nutr.* 1997;65(4)(suppl):1220S-1228S. doi:10. 1093/ajcn/65.4.1220S

39. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. *Stat Med.* 2017;36(5):855-875. doi:10.1002/sim.7141

40. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2

41. Smith-Warner SA, Spiegelman D, Ritz J, et al. Methods for pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and Cancer. *Am J Epidemiol.* 2006;163(11): 1053-1064. doi:10.1093/aje/kwj127

42. Hua H, Burke DL, Crowther MJ, Ensor J, Tudur Smith C, Riley RD. One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information. *Stat Med*. 2017;36(5):772-789. doi:10.1002/sim.7171

43. Bozinovski S, Vlahos R, Anthony D, et al. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. *Br J Pharmacol.* 2016;173(4):635-648. doi:10.1111/bph. 13198

44. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. *Cell*. 2016;165(6):1332-1345. doi:10.1016/j.cell.2016. 05.041

45. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. *Nat Med.* 2014;20(2):159-166. doi:10.1038/nm.3444

46. Sharma A, Viswanath B, Park Y-S. Role of probiotics in the management of lung cancer and related diseases: an update. *J Funct Foods*. 2018; 40:625-633. doi:10.1016/j.jff.2017.11.050

47. Dasari S, Kathera C, Janardhan A, Praveen Kumar A, Viswanath B. Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. *Clin Nutr.* 2017;36(6):1465-1472. doi:10. 1016/j.clnu.2016.11.017

48. Chuang S-C, Vermeulen R, Sharabiani MTA, et al. The intake of grain fibers modulates cytokine levels in blood. *Biomarkers*. 2011;16(6):504-510. doi:10.3109/1354750X.2011.599042

49. Hu FB, Satija A, Rimm EB, et al. Diet assessment methods in the Nurses' Health Studies and contribution to evidence-based nutritional policies and guidelines. *Am J Public Health*. 2016; 106(9):1567-1572. doi:10.2105/AJPH.2016.303348

50. Paeratakul S, Popkin BM, Kohlmeier L, Hertz-Picciotto I, Guo X, Edwards LJ. Measurement error in dietary data: implications for the epidemiologic study of the diet-disease relationship. *Eur J Clin Nutr.* 1998;52(10):722-727. doi:10.1038/sj.ejcn.1600633

51. Willett W. *Nutritional Epidemiology*. 3rd ed. Oxford, New York: Oxford University Press; 2013.